Article contents
Time harmonic electromagnetic waves in an inhomogeneous medium
Published online by Cambridge University Press: 14 November 2011
Synopsis
We consider the scattering of time harmonic electromagnetic waves by an inhomogeneous medium of compact support, i.e. the permittivity ε = ε(x) and the conductivity σ = σ(x) are functions of x ∊ ℝ3. Existence, uniqueness and regularity results are established for the direct scattering problem. Then, based on existence and uniqueness results for the exterior and interior impedance boundary value problem, a method is presented for solving the inverse scattering problem.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 116 , Issue 3-4 , 1990 , pp. 279 - 293
- Copyright
- Copyright © Royal Society of Edinburgh 1990
References
1Angell, T. S., Colton, D. and Kress, R.. Far field patterns and inverse scattering problems for imperfectly conducting obstacles. Math. Proc. Cambridge Philos. Soc. 106 (1989), 553–569.CrossRefGoogle Scholar
2Colton, D. and Kress, R.. Integral Equation Methods in Scattering Theory (New York: Wiley, 1983).Google Scholar
3Colton, D. and Kress, R.. The impedance boundary value problem for the time harmonic Maxwell equations. Math. Methods Appl. Sci. 3 (1981), 475–487.CrossRefGoogle Scholar
4Colton, D. and Monk, P.. A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium. Inverse Problems 5 (1989), 1013–1026.CrossRefGoogle Scholar
5Colton, D. and Päivärinta, L.. Far field patterns and the inverse scattering problem for electromagnetic waves in an inhomogeneous medium. Math. Proc. Cambridge Philos. Soc. 103 (1988), 561–575.Google Scholar
6Colton, D. and Päivärinta, L.. Far field patterns for electromagnetic waves in an inhomogeneous medium. SIAM J. Math. Anal. (to appear).Google Scholar
7Hähner, P.. Abbildungungseigenschaften der Randwertoperatoren bei Randwertaufgaben für die Maxwellschen Gleichungen und die Helmholtz Gleichung (Diplomarbeit, Göttingen, 1987).Google Scholar
8Leis, R.. Initial Boundary Value Problems in Mathematical Physics (Stuttgart: Teubner/New York: Wiley, 1986).CrossRefGoogle Scholar
9Kress, R.. On the boundary operator in electromagnetic scattering. Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), 91–98.CrossRefGoogle Scholar
10Müller, C.. Grundprobleme der mathematischen Theorie elektromagnetischer Schwingungen (Berlin: Springer, 1957).CrossRefGoogle Scholar
11Steinberg, S.. Meromorphic families of compact operators. Arch. Rational Mech. Anal. 31 (1968), 372–379.Google Scholar
12Ursell, F.. On the exterior problems of acoustics. Proc. Cambridge Philos. Soc. 74 (1973), 117–125.CrossRefGoogle Scholar
- 32
- Cited by