Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Xu, Xiangsheng
1996.
Local partial regularity theorems for suitable weak solutions of a class of degenerate systems.
Applied Mathematics & Optimization,
Vol. 34,
Issue. 3,
p.
299.
Bień, Marian
1999.
Existence of global weak solutions for a class of quasilinear equations describing Joule's heating.
Mathematical Methods in the Applied Sciences,
Vol. 22,
Issue. 15,
p.
1275.
Xu, Xiangsheng
2002.
Existence for a model arising from the in situ vitrification process.
Journal of Mathematical Analysis and Applications,
Vol. 271,
Issue. 2,
p.
333.
Montesinos, María Teresa González
and
Gallego, Francisco Ortegón
2005.
Renormalized Solutions to a Nonlinear Parabolic-Elliptic System.
SIAM Journal on Mathematical Analysis,
Vol. 36,
Issue. 6,
p.
1991.
Wu, Xiaoqin
and
Xu, Xiangsheng
2006.
Existence for the thermoelastic thermistor problem.
Journal of Mathematical Analysis and Applications,
Vol. 319,
Issue. 1,
p.
124.
Fernández, José R.
2006.
Numerical analysis of the quasistatic thermoviscoelastic thermistor problem.
ESAIM: Mathematical Modelling and Numerical Analysis,
Vol. 40,
Issue. 2,
p.
353.
González Montesinos, María Teresa
and
Ortegón Gallego, Francisco
2006.
On the existence of solutions for a strongly degenerate system.
Comptes Rendus. Mathématique,
Vol. 343,
Issue. 2,
p.
119.
González Montesinos, María Teresa
and
Ortegón Gallego, Francisco
2007.
Analysis of a Joule–heating model related to resistance welding.
PAMM,
Vol. 7,
Issue. 1,
p.
1150803.
Kuttler, K. L.
Shillor, M.
and
Fernández, J. R.
2008.
Existence for the thermoviscoelastic thermistor problem.
Differential Equations and Dynamical Systems,
Vol. 16,
Issue. 4,
p.
309.
Kuttler, K. L.
Shillor, M.
and
Fernández, J. R.
2009.
Existence for the thermoviscoelastic thermistor problem.
Differential Equations and Dynamical Systems,
Vol. 17,
Issue. 3,
p.
217.
Bermúdez, Alfredo
Muñoz-Sola, Rafael
and
Pena, Francisco
2013.
Existence of a solution for a thermoelectric model with several phase changes and a Carathéodory thermal conductivity.
Nonlinear Analysis: Real World Applications,
Vol. 14,
Issue. 6,
p.
2212.
Bartosz, Krzysztof
Janiczko, Tomasz
Szafraniec, Paweł
and
Shillor, Meir
2018.
Dynamic thermoviscoelastic thermistor problem with contact and nonmonotone friction.
Applicable Analysis,
Vol. 97,
Issue. 8,
p.
1432.
Bahari, M.
El Arabi, R.
and
Rhoudaf, M.
2020.
Capacity solution for a perturbed nonlinear coupled system.
Ricerche di Matematica,
Vol. 69,
Issue. 1,
p.
215.
Hrynkiv, Volodymyr
and
Koshkin, Sergiy
2020.
Optimal Control of a Thermistor Problem with Vanishing Conductivity.
Applied Mathematics & Optimization,
Vol. 81,
Issue. 2,
p.
563.
Bahari, M.
Elarabi, R.
and
Rhoudaf, M.
2021.
Existence of capacity solution for a perturbed nonlinear coupled system.
Journal of Elliptic and Parabolic Equations,
Vol. 7,
Issue. 1,
p.
101.
Ortegón Gallego, Francisco
Ouyahya, Hakima
and
Rhoudaf, Mohamed
2023.
Existence of a capacity solution to a nonlinear parabolic–elliptic coupled system in anisotropic Orlicz-Sobolev spaces.
Results in Applied Mathematics,
Vol. 18,
Issue. ,
p.
100376.
Lahrache, Manar
Ortegón Gallego, Francisco
and
Rhoudaf, Mohamed
2024.
3D numerical simulation of an anisotropic bead type thermistor and multiplicity of solutions.
Mathematics and Computers in Simulation,
Vol. 220,
Issue. ,
p.
640.