No CrossRef data available.
Article contents
A tangent space characterisation of the equivalence of germs for geometric subgroups of
and 
Published online by Cambridge University Press: 14 November 2011
Extract
It is shown that under the action of a geometric subgroup of
and
, for a germ f satisfying a certain finiteness condition, given a germ p, if the tangent spaces of f and f + p are equal for all t ∈ [0, 1], then f and f + p are
-equivalent.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 125 , Issue 3 , 1995 , pp. 587 - 593
- Copyright
- Copyright © Royal Society of Edinburgh 1995
References
1Damon, J.. The Unfolding and Determinacy Theorems for Subgroups of A and K, Mem. Amer. Math. Soc. 306 (Providence, R.I.: American Mathematical Society, 1984).Google Scholar
2Gaffney, T.. Some new results in the classification theory of bifurcation problems. In Multiparameter Bifurcation Theory, Contemporary Mathematics 56 (Providence, R.I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
3Gaffney, T. and Hauser, H.. Characterizing singularities of varieties and of mappings. Inventiones Math. 81 (1985), 427–48.CrossRefGoogle Scholar
4Golubitsky, M. and Langford, W. F.. Classification and unfoldings of degenerate Hopf bifurcations. J. Differential Equations 41 (1981), 375–415.CrossRefGoogle Scholar
5Golubitsky, M. and Marsden, J.. The Morse lemma in infinite dimensions via singularity theory. SIAM J. Math. Anal. 14 (1983), 1037–44.CrossRefGoogle Scholar
6Golubitsky, M. and Schaeffer, D. G.. Imperfect bifurcation in the presence of symmetry. Comm. Math. Phys. 67(1979), 205–32.CrossRefGoogle Scholar
7Golubitsky, M. and Schaeffer, D. G.. Singularities and Groups in Bifurcation Theory, Vol. 1 (New York: Springer, 1985).CrossRefGoogle Scholar
8Golubitsky, M., Stewart, I. and Schaeffer, D. G.. Singularities and Groups in Bifurcation Theory, Vol. 2 (New York: Springer, 1988).CrossRefGoogle Scholar
9Lari-Lavassani, A. and Lu, Y.-C.. Equivariant multiparameter bifurcation via singularity theory. J. Dynamics Differential Equations 5(2) (1993), 189–218.CrossRefGoogle Scholar
10Lari-Lavassani, A. and Lu, Y.-C.. The stability theorems for subgroups of
and
. Canad. J. Math. 46(1994), 995–1006.CrossRefGoogle Scholar


11Martinet, J.. Singularities of Smooth Functions and Maps, London Mathematical Society Lecture Note Series 58 (Cambridge: Cambridge University Press, 1982).Google Scholar
12Mather, J. and Yau, S. S.. Classification of isolated hypersurface singularities by their moduli algebra. Inventiones Math. 69 (1982), 243–51.CrossRefGoogle Scholar