Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T09:23:21.602Z Has data issue: false hasContentIssue false

Sur les sous-groupes planaires des groupes des dispersions des équations difiérentielles linéaires du deuxième ordre

Published online by Cambridge University Press:  14 November 2011

O. Borůvka
Affiliation:
Institute of Mathematics, Czechoslovakian Academy of Sciences, Janáčkovo nám. 2a, 662 95 Brno, Czechoslovakia

Synopsis

A group consisting of real continuous functions of one real variable on the interval j = (−∞, ∞) is called planar if through each point of the plane j × j there passes just one element s ∈ .

Every differential oscillatory equation (Q): y″ = Q(t)y (tj = (−∞, ∞), QC(0)) admits functions, called the dispersions of (Q), that transform (Q) into itself. These dispersions are integrals of Kummer's equation (QQ): −{X, t} + Q(X)X2(t) = Q(t) and form a three-parameter group , known as the dispersion group of (Q). The increasing dispersions of (Q) form a three-parameter group invariant in . The centre of the group is an infinite cyclic group , whose elements, the central dispersions of (Q), describe the position of conjugate points of (Q).

The present paper contains new results concerning the algebraic structure of the group . It provides information on the following: (1) the existence and properties of planar subgroups of a given group and (2) the existence and properties of the groups containing a given planar group . The results obtained are: the planar subgroups of a given group form a system depending on two constants, SQ, such that for all SQ. The equations (Q) whose groups contain the given planar group form a system dependent on one constant, QS, such that for all (Q)∈QS.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

1Blanton, G. and Baker, John A.. Iteration groups generated by Cn functions. Arch. Math. (Brno) 18 (1982), 121128.Google Scholar
2Borůvka, O.. Linear Differential Transformations of the Second Order (London: The English Universities Press, 1971).Google Scholar
3Borůvka, O.. Sur une classe des groupes continus à un paramètre formés des fonctions réelles d'une variable. Ann. Polon. Math. 42 (1982), 2737.Google Scholar
4Borůvka, O.. Sur les transformations simultanées de deux équations différentielles linéaires du deuxième ordre dans elles-mêmes. Applicable Anal. 1983 (sous presse).Google Scholar
5Kuczma, M.. Functional Equations in a Single Variable (Warszawa, 1968).Google Scholar