Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:51:42.740Z Has data issue: false hasContentIssue false

The stability of the resonance set for a problem with jumping non-linearity

Published online by Cambridge University Press:  14 November 2011

Marcel d'Aujourd'hui
Affiliation:
Département de Mathématiques, EPFL, CH-1015, Lausanne, Switzerland

Synopsis

For QL2(0, 1) we investigate the set Γ ∊ ℝ2 of pairs (α β,) for which the problem

has a nontrivial solution which has exactly one zero in (0,1) and is positive near x = 0. We show that Γ is stable in a certain sense under small perturbations of Q. The dependence of Γ upon Q is illustrated by an example.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gallouët, T. and Kavian, O.. Résultats d'existence et de non-existence de solutions pour certains problèmes demi-linéaires à l'infini. C.R. Acad. Sci. Paris 291 (1980), 193196.Google Scholar
2Gallouët, T. and Kavian, O.. Résultats d'existence et de non-existence pour certains problémes demi-linéaires à l'infini. Ann. Fac. Sci. Toulouse Math. 3 (1981), 201246.Google Scholar
3Ruf, B.. On nonlinear elliptic problems with jumping nonlinearities. Ann. Mat. Pura Appl. (4) 128 (1981), 133151.CrossRefGoogle Scholar
4Stuart, C. A.. Elliptic boundary-value problems with jumping nonlinearities. Rapport interne, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.Google Scholar