Published online by Cambridge University Press: 15 January 2019
We consider a class of Schrödinger operators on ${\open R}^N$ with radial potentials. Viewing them as self-adjoint operators on the space of radially symmetric functions in $L^2({\open R}^N)$, we show that the following properties are generic with respect to the potential:
(P1) the eigenvalues below the essential spectrum are nonresonant (i.e., rationally independent) and so are the square roots of the moduli of these eigenvalues;
(P2) the eigenfunctions corresponding to the eigenvalues below the essential spectrum are algebraically independent on any nonempty open set.