Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T09:22:05.439Z Has data issue: false hasContentIssue false

Smooth conjugacy of centre manifolds

Published online by Cambridge University Press:  14 November 2011

Almut Burchard
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA30332, U.S.A.
Bo Deng
Affiliation:
Department of Mathematics and Statistics, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A.
Kening Lu
Affiliation:
Department of Mathematics, Brigham Young University, Provo, UT 84602, U.S.A.

Synopsis

In this paper, we prove that for a system of ordinary differential equations of class Cr+1,1, r≧0 and two arbitrary Cr+1, 1 local centre manifolds of a given equilibrium point, the equations when restricted to the centre manifolds are Cr conjugate. The same result is proved for similinear parabolic equations. The method is based on the geometric theory of invariant foliations for centre-stable and centre-unstable manifolds.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Anosov, D. V.. Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov Inst. Math. 90 (1967), 1209.Google Scholar
2Bates, P. and Jones, C. K.. Invariant manifolds for semilinear partial differential equations. Dynamics Reported 2 (1989) 138.Google Scholar
3Chow, S.-N. and Hale, K. J.. Methods of Bifurcation Theory (New York: Springer, 1982).CrossRefGoogle Scholar
4Chow, S.-N. and Lin, X.-B.. Bifurcation of a homoclinic orbit with a saddle-node equilibrium. Differential and Integral Equations 3 (1990), 435466.Google Scholar
5Chow, S.-N., Lin, X.-B. and Lu, K.. Smooth invariant foliations in infinite dimensional spaces. J. Differential Equations (to appear).Google Scholar
6Chow, S.-N. and Ck, K. Lu.centre unstable manifolds. Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), 303320.Google Scholar
7Chow, S.-N. and Lu, K.. Invariant manifolds for flows in Banach spaces. J. Differential Equations 74 (1988), 285317.CrossRefGoogle Scholar
8Chow, S.-N., Lu, K. and Sell, G. R.. Smoothness of Inertial Manifolds (IMA preprint 684, 1990).Google Scholar
9Constantin, P., Foias, C., Nicolaenko, B. and Témam, R.. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (New York: Springer, 1989).CrossRefGoogle Scholar
10Deng, B.. Homoclinic bifurcations with nonhyperbolic equilibria. SIAM J. Math. Anal. 21 (1989), 693720.Google Scholar
11Deng, B.. The existence of infinitely many traveling front and back waves in the FitzHugh- Nagumo equations SIAM J. Math. Anal, (to appear).Google Scholar
12Fenichel, N.. Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23 (1974), 11091137.CrossRefGoogle Scholar
13Fenichel, N.. Asymptotic stability with rate conditions, II. Indiana Univ. Math. J. 26 (1977), 8793.CrossRefGoogle Scholar
14Fenichel, N.. Geometric singular perturbation theory for ordinary differential équations. J. Differential Equations 31 (1979), 5398.CrossRefGoogle Scholar
15Foias, C., Sell, G. R. and Témam, R.. Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations 73 (1988), 309353.CrossRefGoogle Scholar
16Hadamard, P.. Sur l'iteration et les solutions asymptotiques des equations dfferentielles. Bull. Soc. Math. France 29 (1901), 224228.Google Scholar
17Hale, J. K. and Lin, X.-B.. Symbolic dynamics and nonlinear flows. Ann. Mat. Pura. App. 144 (1986), 229260.CrossRefGoogle Scholar
18Hale, J. K., Magalhães, L. T. and Oliva, W. M.. An Introduction to Infinite Dimensional Systems - Geometric Theory, Appl. Math. Sci. 47 (Berlin: Springer, 1984).Google Scholar
19Henry, D.. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840 (New York: Springer, 1981).CrossRefGoogle Scholar
20Hirsch, M. W. and Pugh, C.. Stable manifolds and hyperbolic sets. Bull. Amer. Math. Soc. 75 (1969) 149152; 76 (1969), 1015–1019.CrossRefGoogle Scholar
21Hirsch, M. W., Pugh, C. and Shub, M.. Invariant Manifolds, Lecture Notes in Mathematics 583 (New York: Springer, 1977).CrossRefGoogle Scholar
22Kelley, A.. The stable, center-stable center, center-unstable and unstable manifolds. J. Differential Equations 3 (1967), 546570.CrossRefGoogle Scholar
23Lyapunov, A. M.. Problème Général de la Stabilitè du Mouvement (Nharkov, 1892); Ann. of Math. Stud. 17 (Princeton: Princeton University Press, 1947).Google Scholar
24Lu, K.. A Hartman-Grobman theorem for scalar reaction-diffusion equations. J. Differential Equations (to appear).Google Scholar
25Lu, K.. Structural stability of hyperbolic equilibra of parabolic equations. Trans. Amer. Math. Soc. (submitted).Google Scholar
26Mallet, J.-Paret and Sell, G. R.. Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Amer. Math. Soc. 1 (1988), 805866.CrossRefGoogle Scholar
27Mielke, A.. A reduction principle for nonautonomous systems in infinite-dimensional spaces. J. Differential Equations 65 (1986), 6888.CrossRefGoogle Scholar
28Palis, J.. On Morse-Smale dynamical systems. Topology 8 (1969), 385404.CrossRefGoogle Scholar
29Palis, J. and Smale, S.. Structural stability theorem. Proc. Sympos. Pure Math. 14 (1970), 223232.CrossRefGoogle Scholar
30Palis, J. and Takens, F.. Topological equivalence of normally hyperbolic dynamical systems. Topology 16 (1977), 335345.CrossRefGoogle Scholar
31Perron, O.. Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen. Math. Zeit. 29 (1928), 129160.CrossRefGoogle Scholar
32Pliss, V. A.. Principal reduction in the theory of stability of motion. Izv. Akad. Nauk SSSR, Mat Ser. 28 (1964), 12971324 (in Russian); Soviet Math. 5 (1964), 247–254.Google Scholar
33Poincar, H.é. Les Méthodes Nouvelles de la Mécanique Céleste (Paris: Gauthier-Villars, 1892); (New York: Dover, 1957).Google Scholar
34Robinson, C.. Structural stability of C'-diffeomorphisms. J. Differential Equations 22 (1976), 2873.CrossRefGoogle Scholar
35Sijbrand, J.. Properties of center manifolds. Trans. Amer. Math. Soc. 289 (1985), 431469.CrossRefGoogle Scholar
36Vanderbauwhede, A.. Center manifolds, normal forms and elementary bifurcations. Dynamics Reported 2 (1989), 89169.CrossRefGoogle Scholar
37Vanderbauwhede, A. and Iooss, G.. Center manifold theory in infinite dimensions (preprint).Google Scholar
38Wells, J. C.. Invariant manifolds of non-linear operators. Pacific J. Math. 62 (1976), 285293.CrossRefGoogle Scholar
39Carr, J.. Applications of Centre Manifold Theory (New York: Springer-Verlag, 1981).CrossRefGoogle Scholar