Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T00:23:02.112Z Has data issue: false hasContentIssue false

Series expansion of Leray–Trudinger inequality

Published online by Cambridge University Press:  20 December 2021

Xiaomei Sun
Affiliation:
College of Science, Huazhong Agricultural University, Wuhan 430070, China ([email protected], [email protected])
Kaixiang Yu
Affiliation:
College of Science, Huazhong Agricultural University, Wuhan 430070, China ([email protected], [email protected])
Anqiang Zhu
Affiliation:
School of Mathematics and Statistics, Wuhan University, Wuhan 430070, China ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$, which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

1. Introduction

Let $\Omega$ be a bounded domain of $\mathbb {R}^{n}$ containing the origin, $n\geq 2$ and $p>1$, the classical p-Hardy inequality asserts that

(1.1)\begin{equation} \int_{\Omega}|\nabla u|^{p}\,{\rm d}x\geq \left|\frac{n-p}{p}\right|^{p}\int_{\Omega}\frac{|u|^{p}}{|x|^{p}}\,{\rm d}x, \forall \ u\in C_0^{\infty}(\Omega), \end{equation}

with $\left |\frac {n-p}{p}\right |^{p}$ being the best constant and never achieved [Reference Brezis and Marcus6, Reference Brezis, Marcus and Shafrir7, Reference Davies10, Reference Hardy, Littlewood and Pólya15, Reference Opic and Kufner20, Reference Vazquez and Zuazua24]. Many improvements of Hardy inequality can be obtained by adding the error term in the right side of (1.1) [Reference Brezis and Vazquez8, Reference Gazzola, Grunau and Mitidieri12]. The first improvement was obtained by Brezis and Vazquez [Reference Brezis and Vazquez8]. When $p=2$, they have shown that (1.1) can be improved by adding subcritical Sobolev term $\int _{\Omega }|u|^{q}\,\textrm {d}x (1\leq q<2^{*}=\frac {2n}{n-2})$. After that, Chaudhuri and Ramaswamy [Reference Chaudhuri and Ramaswamy9] improved inequality (1.1) by introducing a subcritical Hardy–Sobolev term $\int _{\Omega }\frac {|u|^{q}}{|x|^{\beta }}\,\textrm {d}x \ \ (0\leq \beta <2$, $1\leq q<2^{*}_{\beta }:=\frac {2(n-\beta )}{n-2})$ [Reference Adimurthi and Tertikas1]. Later, Adimurthi, Chaudhuri and Ramaswamy [Reference Adimurthi and Ramaswamy2] extended their results to general $L_p$ Hardy inequality for $2\leq p< n$. In [Reference Filippas and Tertikas11], Filippas and Tertikas pointed out that the critical Sobolev type improvement for $p=2$ could be established by adding a logarithmic term. Their result is as follows.

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n}(n\geq 3)$ containing the origin, $R_{\Omega }:=\sup _{x\in \Omega }|x|$, then for any $u\in H^{1}_0(\Omega )$ and $R\geq R_{\Omega }$, there exists a constant $C_n>0$ depending only on $n$, such that

(1.2)\begin{equation} \int_{\Omega}|\nabla u|^{2}\,{\rm d}x-\left(\frac{n-2}{2}\right)^{2}\int_{\Omega}\frac{|u|^{2}}{|x|^{2}}\,{\rm d}x \geq C_{n}\left(\int_{\Omega}\left(|u|^{2^{*}}X_1^{1+\frac{2^{*}}{2}}\left(\frac{|x|}{R}\right)\right)\,{\rm d}x\right)^{\frac{2}{2^{*}}}. \end{equation}

Here

(1.3)\begin{equation} X_1(t)=(1-logt)^{{-}1}, \quad t\in (0,1]. \end{equation}

Inequality (1.2) was sharp in the sense that $X_1^{1+\frac {2^{*}}{2}}$ cannot be replaced by a smaller power of $X_1$.

In [Reference Filippas and Tertikas11], the authors also established the series expansion of Hardy inequality. Their results were extended to the following general $L_p$ ($p\neq n$) Hardy inequality [Reference Barbatis, Filippas and Tertikas5].

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n}(n\geq 3)$ containing the origin, $R_{\Omega }:=\sup _{x\in \Omega }|x|$, then for any $u\in W^{1,p}_0(\Omega \setminus \{0\})$ and $R\geq R_{\Omega }$, there holds

(1.4)\begin{align} \int_{\Omega}|\nabla u|^{p}\,{\rm d}x& \geq \left|\frac{n-p}{p}\right|^{p}\int_{\Omega}\frac{|u|^{p}}{|x|^{p}}\,{\rm d}x+\frac{p-1}{2p}\left|\frac{n-p}{p}\right|^{p-2}\nonumber\\ & \quad \times \sum\limits_{i=1}^{\infty}\int_{\Omega}\frac{|u|^{p}}{|x|^{p}}X_1^{2}\left(\frac{|x|}{R}\right)X_2^{2}\left(\frac{|x|}{R}\right)\cdots X_i^{2}\left(\frac{|x|}{R}\right)\,{\rm d}x. \end{align}

Here

(1.5)\begin{equation} X_k(t)=X_1(X_{k-1}(t)), \quad k\geq 2. \end{equation}

In [Reference Filippas and Tertikas11], the authors also proved the following series expansion of Hardy inequality for $p=2$ with critical sobolev term.

(1.6)\begin{align} \int_{\Omega}|\nabla u|^{2}\,{\rm d}x& \geq \left(\frac{n-2}{2}\right)^{2}\int_{\Omega}\frac{|u|^{2}}{|x|^{2}}\,{\rm d}x+\frac{1}{4}\sum\limits_{i=1}^{k}\int_{\Omega}\frac{|u|^{2}}{|x|^{2}}\prod\limits_{j=1}^{i}X_j^{2}\left(\frac{|x|}{R}\right)\,{\rm d}x\nonumber\\ & \quad+C_n\left(\int_{\Omega}|u|^{2^{*}}\prod\limits_{i=1}^{k+1}X_i^{1+\frac{2^{*}}{2}}\left(\frac{|x|}{R}\right)\,{\rm d}x\right)^{\frac{2}{2^{*}}}. \end{align}

The exponent $1+\frac {2^{*}}{2}$ on $X_{k+1}$ cannot be decreased.

Recently, Gkikas and Psaradakis [Reference Gkikas and Psaradakis13] generalized inequality (1.6) to the general case $1< p< n$ and $p>n$. When $1< p< n$, by adding an optimally weighted critical Sobolev norm, they obtained the following results.

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n}$ containing the origin, $n\geq 2$ and $1< p< n$, $R_{\Omega }:=\sup _{x\in \Omega }|x|$, there exist constants $C_n>0$ depending only on $n$ and $B:=B(n,\,p)\geq 1$, such that for any $u\in W^{1,p}_0(\Omega )$, $R\geq B R_{\Omega }$ and $k\in \mathbb {N}$, there holds

(1.7)\begin{align} \int_{\Omega}|\nabla u|^{p}\,{\rm d}x& \geq \left(\frac{n-p}{p}\right)^{p}\int_{\Omega}\frac{|u|^{p}}{|x|^{p}}\,{\rm d}x+\frac{p-1}{2p}\left(\frac{n-p}{p}\right)^{p-2}\nonumber\\ & \quad\times \sum\limits_{i=1}^{k}\int_{\Omega}\frac{|u|^{p}}{|x|^{p}}\prod\limits_{j=1}^{i}X_j^{2}\left(\frac{|x|}{R}\right)\,{\rm d}x\nonumber\\ & \quad+C_n\left(\int_{\Omega}|u|^{p^{*}}\prod\limits_{i=1}^{k+1}X_i^{1+\frac{p^{*}}{p}}\left(\frac{|x|}{R}\right)\,{\rm d}x\right)^{\frac{p}{p^{*}}}. \end{align}

The exponent $1+\frac {p^{*}}{p}$ on $X_{k+1}$ cannot be decreased. When $p>n$, they established the series expansion of $L_p$ Hardy inequality by adding the optimally weighted Hölder seminorm.

All the previous results we mentioned are concerning about the case $p\neq n$. When $p=n$, Hardy inequality can be stated as follows [Reference Adimurthi and Ramaswamy2Reference Barbatis, Filippas and Tertikas4, Reference Leray16].

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n} (n\geq 2)$, containing the origin, then for any $R\geq R_{\Omega }$ and $u\in W_0^{1,n}(\Omega )$, one has

(1.8)\begin{equation} \int_{\Omega}|\nabla u|^{n}\,{\rm d}x\geq \left(\frac{n-1}{n}\right)^{n}\int_{\Omega}\frac{|u|^{n}}{|x|^{n}}X_1\left(\frac{|x|}{R}\right)\,{\rm d}x. \end{equation}

Barbatis, Filippas and Tertikas [Reference Barbatis, Filippas and Tertikas5] established the following series expansion of Hardy inequality for the case $p=n$.

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n} (n\geq 2)$ containing the origin, then for any $R>R_{\Omega }$ and for all $u\in W^{1,n}_0(\Omega \setminus \{0\})$, one has

(1.9)\begin{align} \int_{\Omega}|\nabla u|^{n}\,{\rm d}x& \geq \left(\frac{n-1}{n}\right)^{n}\int_{\Omega}\frac{|u|^{n}}{|x|^{n}}X_1^{n}\left(\frac{|x|}{R}\right)\,{\rm d}x+\frac{1}{2}\left(\frac{n-1}{n}\right)^{n-1}\nonumber\\ & \quad\times \sum\limits_{i=2}^{\infty}\int_{\Omega}\frac{|u|^{n}}{|x|^{n}}X_1^{n}\left(\frac{|x|}{R}\right)X_2^{2}\left(\frac{|x|}{R}\right)\cdots X_i^{2}\left(\frac{|x|}{R}\right)\,{\rm d}x. \end{align}

In analogy with inequality (1.1), it is natural to ask whether similar critical Sobolev term can be added into inequality (1.8). Since the limit case of critical Sobolev inequality is Moser–Trudinger inequality [Reference Li and Ruf17, Reference Moser18, Reference Ruf22, Reference Tintarev23], the natural substitute of critical Sobolev term is some exponential function. Recently, Psaradakis and Spector [Reference Psaradakis and Spector21] established the following Leray–Trudinger inequality.

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n} (n\geq 2)$ containing the origin, then for any $\epsilon >0$ and $R\geq R_{\Omega }$, there exist positive constants $A_{n,\epsilon }$ and $B_{n}$, such that for all $u\in W_0^{1,n}(\Omega )$ satisfying $I_1(u)\leq 1$, one has

(1.10)\begin{equation} \int_{\Omega}e^{A_{n,\epsilon}\left(|u|X_1^{\epsilon}\left(\frac{|x|}{R}\right)\right)^{\frac{n}{n-1}}}\,{\rm d}x\leq B_n{\rm vol}(\Omega), \end{equation}

where $I_1(u)$ is defined by

(1.11)\begin{equation} I_1(u):=\int_{\Omega}|\nabla u|^{n}\,{\rm d}x-\left(\frac{n-1}{n}\right)^{n}\int_{\Omega}\frac{|u|^{n}}{|x|^{n}}X_1^{n}\left(\frac{|x|}{R}\right)\,{\rm d}x. \end{equation}

Moreover, inequality (1.10) failed for $\epsilon =0$.

Inequality (1.10) is closely related with Hardy inequality and Moser–Trudinger inequality. Subsequently, Mallick and Tintarev [Reference Mallick and Tintarev19] extended inequality (1.10) to the following form:

Let $\Omega$ be a bounded domain in $\mathbb {R}^{n} (n\geq 2)$ containing the origin, then for any $\beta \geq \frac {2}{n}$ and $R\geq R_{\Omega }$, there exist positive constants $A_n$ and $B_n$, such that for any $0< c< A_n$ and for all $u\in W_0^{1,n}(\Omega )$ satisfying $I_1(u)\leq 1$, one has

(1.12)\begin{equation} \int_{\Omega}e^{c\left(|u|X_2^{\beta}\left(\frac{|x|}{R}\right)\right)^{\frac{n}{n-1}}}\,{\rm d}x\leq B_n {\rm vol}(\Omega),\end{equation}

where $X_2(t):=X_1(X_1(t))$. Moreover, inequality (1.12) failed if $\beta <\frac {1}{n}$ for any $c>0$.

The relationship of inequality (1.10) and inequality (1.12) motivates us to investigate whether inequality (1.12) can be improved to be series expansion. In this paper, we establish the following series expansion of Leray–Trudinger inequality. Our main result is as follows.

Theorem 1.1 Let $\Omega$ be a bounded domain in $\mathbb {R}^{n}$ containing the origin, $n\geq 2$ and $R_{\Omega }:=\sup _{x\in \Omega }|x|$. Then for any $k\in \mathbb {N},$ $k\geq 1$ and $R\geq R_{\Omega },$ there exist constants $A(k,\,n)$ and $B(k,\,n),$ such that for any $0< C< A(k,\,n)$ and $u\in W_0^{1,n}(\Omega )$ satisfying $I_k(u)\leq 1,$ one has

(1.13)\begin{equation} \int_{\Omega}e^{C\left(\left|u(x)\right|\prod\limits_{i=2}^{k+1}X_i^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right)^{\frac{n}{n-1}}}\,{\rm d}x\leq B(k,n)Vol(\Omega), \end{equation}

where $I_1(u)$ is defined by (1.11) and for $k\geq 2,$ $I_k(u)$ is defined by

(1.14)\begin{equation} I_k(u):=I_{k-1}(u)-\frac{1}{2}\left(\frac{n-1}{n}\right)^{n-1}\int_{\Omega}\frac{|u|^{n}}{|x|^{n}}X_1^{n}\left(\frac{|x|}{R}\right)X_2^{2}\left(\frac{|x|}{R}\right)\cdots X_k^{2}\left(\frac{|x|}{R}\right)\,{\rm d}x. \end{equation}

Moreover, if replacing $X_{k+1}^{2}$ by $X_{k+1}^{\beta },$ one has that inequality (1.13) holds for any $\beta \geq \frac {2}{n}$.

Remark 1.2 When $k=1$, inequality (1.13) becomes inequality (1.12). Hence our result extends early results obtained by Mallick and Tintarev [Reference Mallick and Tintarev19] to series expansion form. However, in [Reference Mallick and Tintarev19], they obtained that inequality (1.12) holds when $\beta \geq \frac {2}{n}$ and fails when $\beta <\frac {1}{n}$. Here we can't show that inequality (1.13) fails when $\beta <\frac {1}{n}$. Moreover, as we mentioned before, Gkikas and Psaradakis [Reference Gkikas and Psaradakis13] obtained series optimal forms of Hardy inequality for $1< p< n$ and $p>n$ but didn't consider $p=n$, our result is about this case. However, we can't obtain optimal forms by our method.

To prove the main result, we follow closely Trudinger's original proof (see [Reference Gilbarg and Trudinger14]), which has been used in [Reference Psaradakis and Spector21] and [Reference Mallick and Tintarev19]. Our main steps are as follows. Firstly, we find a suitable function (2.6), which is a supersolution of some Laplace equation (lemma 2.5). By this function, we define corresponding transform to obtain $L^{q}$ estimate (proposition 3.1). After that, we obtain the exponential integrability.

This paper is organized as follows. In § 2, we establish some important preliminaries. In § 3, we give the proof of theorem 1.1.

2. Preliminaries

In this section, we list some important preliminaries.

By the definition of $X_k(t)$(see (1.5)), we define

(2.1)\begin{equation} Y_k(t):=\prod\limits_{i=2}^{k}X_i(t), \quad Z_k(t):=\sum\limits_{i=2}^{k}Y_i(t), \ k=2,3,\cdots. \end{equation}

The following proposition is due to the derivative of $X_k$,$Y_k$ and $Z_k$.

Proposition 2.1 For any $k\in \mathbb {N}$ and $k\geq 2,$ one has

(2.2)\begin{align} & \frac{d}{dt}\left(X_k^{\beta}(t)\right)=\frac{\beta}{t}X_1(t)Y_k(t) X_k^{\beta}(t); \end{align}
(2.3)\begin{align} & \frac{d}{dt}\left(Y_k(t)\right)=\frac{1}{t}X_1(t)Y_k(t)Z_k(t); \end{align}
(2.4)\begin{align} & \frac{d}{dt}\left(Z_k(t)\right)=\frac{1}{2t}X_1(t)\left(Z_k^{2}(t)+\sum\limits_{i=2}^{k}Y_i^{2}(t)\right). \end{align}

Proof. The first one is proved in [Reference Gkikas and Psaradakis13], lemma 2.2. Since $Y_k$ and $Z_k$ are different from definition 2.1 appeared in [Reference Gkikas and Psaradakis13]. We list the proof of (2.3) and (2.4) as follows.

\begin{align*} \frac{d}{dt}\left(Y_k(t)\right)& =\sum\limits_{j=2}^{k}\left(\frac{d}{dt}\left(X_j(t)\right)\prod\limits_{i=2,i\neq j}^{k}X_i(t)\right)\\ & =\frac{1}{t}X_1(t)\sum\limits_{j=2}^{k}\left(Y_j(t)X_j(t)\prod\limits_{i=2,i\neq j}^{k}X_i(t)\right)\\ & =\frac{1}{t}X_1(t)Y_k(t)Z_k(t). \end{align*}

From the elementary identity

\begin{align*} 2\sum\limits_{i=2}^{k}Y_iZ_i& =2\sum\limits_{i,j=2;j\leq i}^{k}Y_iY_j=2\sum\limits_{i,j=2;j< i}^{k}Y_iY_j+2\sum\limits_{i=2}^{k}Y_i^{2}\\ & =\left(\sum\limits_{i=2}^{k}Y_i\right)^{2}+\sum\limits_{i=2}^{k}Y_i^{2}=Z_k^{2}+\sum\limits_{i=2}^{k}Y_i^{2}, \end{align*}

one has

\begin{align*} \frac{d}{dt}\left(Z_k(t)\right)& =\sum\limits_{i=2}^{k}\frac{d}{dt}\left(Y_i(t)\right)=\frac{1}{t}X_1(t)\sum\limits_{i=2}^{k}Y_i(t)Z_i(t)\\ & =\frac{1}{2t}X_1(t)\left(Z_k^{2}(t)+\sum\limits_{i=2}^{k}Y_i^{2}(t)\right). \end{align*}

Defining $Z_{\infty }(t):=\sum \limits _{i=2}^{\infty }Y_k(t)$, it converges if and only if $t\in (0,\,1)$, see [Reference Gkikas and Psaradakis13].

Concerning $I_k(u)$, the following results hold, see [Reference Barbatis, Filippas and Tertikas5].

Proposition 2.2 Theorem B [Reference Barbatis, Filippas and Tertikas5]

For any $k\in \mathbb {N},$ $R\geq R_{\Omega }$ and $u\in C_c^{\infty }(\Omega \setminus \{0\}),$ one has

\[ I_k(u)\geq \frac{1}{2}\left(\frac{n-1}{n}\right)^{n-1}\int_{\Omega}\frac{|u|^{n}}{|x|^{n}}X_1^{n}\left(\frac{|x|}{R}\right)X_2^{2}\left(\frac{|x|}{R}\right)\cdots X_{k+1}^{2}\left(\frac{|x|}{R}\right)\,{\rm d}x. \]

The following lemma is a standard representation formula for smooth functions.

Lemma 2.3 [Reference Gilbarg and Trudinger14], Lemma 7.14

Let $\Omega$ be any open set in $\mathbb {R}^{n},$ $n\geq 2,$ $u\in C_c^{1}(\Omega ),$ then

(2.5)\begin{equation} u(x)=\frac{1}{nw_n}\int_{\Omega}\frac{(x-y)\cdot \nabla u(y)}{|x-y|^{n}}\,{\rm d}y, \end{equation}

where $w_n$ is the volume of unit ball in $\mathbb {R}^{n}$.

In [Reference Psaradakis and Spector21], let $u(x)=X_1^{\frac {1-n}{n}}(\frac {|x|}{R})v(x),$ the authors obtained the following lower bound of $I_1(u)$. That is,

\[ I_1(u)\geq C_1(n)\int_{\Omega}|\nabla v|^{n}X_1^{1-n}\,{\rm d}x, \]

where $C_1(n)=\frac {1}{2^{n-1}-1}$. In the following, we are going to extend their result to arbitrary $k\in \mathbb {N}$. Precisely, we have

Theorem 2.4 For any $R\geq R_{\Omega },$ $k\in \mathbb {N}$ and $k\geq 2,$ set

(2.6)\begin{equation} w_k(x)=X_1^{\frac{1-n}{n}}\left(\frac{|x|}{R}\right)X_2^{-\frac{1}{n}}\left(\frac{|x|}{R}\right)\cdots X_k^{-\frac{1}{n}}\left(\frac{|x|}{R}\right),\ x\in \Omega, \end{equation}

then for all $u\in C_c^{\infty }(\Omega \setminus \{0\}),$ one has

(2.7)\begin{equation} I_k(u)\geq C_1(n)\int_{\Omega}|\nabla v|^{n}w_k^{n}\,{\rm d}x, \end{equation}

where $v$ is defined by $u(x):=w_k(x)v(x)$.

In order to prove theorem 2.4, the following key lemma is needed.

Lemma 2.5 For any $k\in \mathbb {N},$ the function $w_k$ defined by (2.6), is a supersolution of the following Laplace equation:

\[ -\Delta_nw-\left(\left(\frac{n-1}{n}\right)^{n}+\frac{1}{2}\left(\frac{n-1}{n}\right)^{n-1}\sum\limits_{i=2}^{k}Y_i^{2}\left(\frac{|x|}{R}\right)\right) X_1^{n}\left(\frac{|x|}{R}\right)\frac{|w|^{n-2}w}{|x|^{n}}=0. \]

Proof. Let $A_k(x)=X_1(\frac {|x|}{R})(\frac {1-n}{n}-\frac {1}{n}Z_k(\frac {|x|}{R}))$, then by direct calculation, one has

\[ \nabla w_k=w_kA_k\frac{x}{|x|^{2}}. \]

Hence,

\begin{align*} -\Delta_n w_k& ={-}{\rm div}\left(|\nabla w_k|^{n-2}\nabla w_k\right)={-}{\rm div}\left\{\frac{|w_k|^{n-2}w_k|A_k|^{n-2}A_kx}{|x|^{n}}\right\}\\ & ={-}{\rm div}\left\{\frac{|w_k|^{n-2}w_kx}{|x|^{n}}\right\}|A_k|^{n-2}A_k-\left\{\frac{|w_k|^{n-2}w_kx}{|x|^{n}}\right\}\cdot\nabla\left(|A_k|^{n-2}A_k\right). \end{align*}

While

\[ -{\rm div}\left\{\frac{|w_k|^{n-2}w_kx}{|x|^{n}}\right\}=(1-n)\frac{|w_k|^{n-2}w_kA_k}{|x|^{n}} \]

and

\[ \nabla\left(|A_k|^{n-2}A_k\right)=(n-1)|A_k|^{n-2}\nabla A_k, \]

thus

\begin{align*} -\Delta_n w_k& =\frac{|w_k|^{n-2}w_k|A_k|^{n-2}}{|x|^{n}}\left((1-n)A_k^{2}-(n-1)x\cdot\nabla A_k\right)\\ & =\frac{|w_k|^{n-2}w_k}{|x|^{n}}X_1^{n}\left|\frac{1-n}{n}-\frac{Z_k}{n}\right|^{n-2} \left((1-n)\left(\frac{1-n}{n}-\frac{Z_k}{n}\right)^{2}\right.\\ & \quad -\left. (n-1)\left(\frac{1-n}{n}-\frac{Z_k}{n}-\frac{1}{2n}\left(Z_k^{2}+\sum\limits_{i=2}^{k}Y_i^{2}\right)\right)\right)\\ & =\frac{|w_k|^{n-2}w_k}{|x|^{n}}X_1^{n}\left(\frac{n-1}{n}\right)^{n-2}\left|1+\frac{Z_k}{n-1}\right|^{n-2}\\ & \quad\times\left(\frac{(1-n)^{2}}{n^{2}}+\frac{(n-1)(2-n)}{n^{2}}Z_k+\frac{(n-1)(n-2)}{2n^{2}}Z_k^{2}+\frac{n-1}{2n}\sum\limits_{i=2}^{k}Y_i^{2}\right). \end{align*}

In order to prove the result, we should prove that

(2.8)\begin{align} & \left|1+\frac{Z_k}{n-1}\right|^{n-2}\left(\frac{(1-n)^{2}}{n^{2}}+\frac{(n-1)(2-n)}{n^{2}}Z_k\right.\notag\\ & \quad +\left.\frac{(n-1)(n-2)}{2n^{2}}Z_k^{2}+\frac{n-1}{2n}\sum\limits_{i=2}^{k}Y_i^{2}\right)\nonumber\\ & \quad\geq\left(\frac{n-1}{n}\right)^{2}+\frac{n-1}{2n}\sum\limits_{i=2}^{k}Y_i^{2}. \end{align}

When $n=2$, inequality (2.8) naturally holds true. In the following, we just consider the case of $n>2$. Let $t=\frac {Z_k}{n}$, $h=\frac {1-n}{n}$ and $\lambda =\frac {n-1}{2n}\sum \limits _{i=2}^{k}Y_i^{2}$, then inequality (2.8) can be written by

(2.9)\begin{equation} \left(h^{2}+\lambda\right)\left(1-\left|1-\frac{t}{h}\right|^{2-n}\right)+h(n-2)t+\frac{(n-2)(n-1)}{2}t^{2}\geq 0. \end{equation}

Consider function $g(x)=\left |1-x\right |^{2-n}$, by Taylor expansion at $x=0$ (see [Reference Gkikas and Psaradakis13]), one has

\[ g(x)=1+(n-2)x+\frac{(n-1)(n-2)}{2}x^{2}+\frac{n(n-1)(n-2)}{6}x^{3}+O(x^{4}). \]

Therefore, inequality (2.9) is equivalent to

(2.10)\begin{equation} -\frac{n-2}{h}\left(\frac{n(n-1)}{6}t^{3}+\lambda t\right)+O(\lambda t^{2})\geq 0. \end{equation}

While inequality (2.10) holds since $n>2$ and $h<0$. Therefore, we complete our proof.

The proof of theorem 2.4. Setting $u(x)=w_k(x)v(x)$, from the following inequality (see [Reference Gkikas and Psaradakis13, Reference Psaradakis and Spector21])

(2.11)\begin{equation} |a+b|^{p}\geq |a|^{p}+C_1(p)|b|^{p}+p|a|^{p-2}a\cdot b, \quad \forall \ a,b\in\mathbb{R}^{n}, p\geq 2, \end{equation}

and integrating by parts, we deduce that

(2.12)\begin{align} \int_{\Omega}|\nabla u|^{n}\,{\rm d}x& =\int_{\Omega}\left|v\nabla w_k+w_k\nabla v\right|^{n}\,{\rm d}x\nonumber\\ & \geq\int_{\Omega} \left[|v|^{n}\left|\nabla w_k\right|^{n}+C_1(n)|\nabla v|^{n}\left|w_k\right|^{n}+\left(\nabla |v|^{n}\right)\right.\notag\\ & \quad \cdot \left. \left(|\nabla w_k|^{n-2}w_k\nabla w_k\right)\right]\,{\rm d}x\nonumber\\ & =C_1(n)\int_{\Omega} |\nabla v|^{n}|w_k|^{n}-\int_{\Omega}|u|^{n}w_k^{{-}1}|w_k|^{2-n}\Delta_n w_k\,{\rm d}x. \end{align}

Therefore, we obtain inequality (2.7) from lemma 2.5.

3. Proof of theorem 1.1

In this section, we give the proof of theorem 1.1. Firstly, we prove the following $L^{q}$ estimate.

Proposition 3.1 Let $u\in W_0^{1,n}(\Omega ),$ for any $q>n$ and $R\geq R_{\Omega },$ we have

(3.1)\begin{align} & \left(\int_\Omega \left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|^{q}\,{\rm d}x\right)^{\frac{1}{q}}\notag\\ & \quad \leq C(k,n)\left(1+\frac{q(n-1)}{n}\right)^{1-\frac{1}{n}+\frac{1}{q}}({\rm vol}(\Omega))^{\frac{1}{q}}(I_k(u))^{\frac{1}{n}},\end{align}

where $C(k,\,n)= (\frac {1}{C_1(n)^{\frac {1}{n}}}+2^{\frac {1}{n}}C^{'}(k,\,n)(\frac {n}{n-1})^{\frac {n-1}{n}})\frac {1}{n w_n^{\frac {1}{n}}}$.

Proof. Let $u\in C_c^{\infty }(\Omega \setminus \{0\})$, we define $u(x)=w_k(x)v(x)$, then inequality (2.5) implies that

\begin{align*} & \left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|\\ & \quad=\left|v(x)X_1^{\frac{1-n}{n}}\left(\frac{|x|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|x|}{R}\right) X_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|\\ & \quad=\left|\frac{1}{nw_n}\int_\Omega\frac{(x-y)\cdot\nabla\left(v(y)X_1^{\frac{1-n}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\right)}{|x-y|^{n}}\,{\rm d}y\right|\\ & \quad\leq\frac{1}{nw_n}\int_\Omega\frac{\left|\nabla v(y)\right| X_1^{\frac{1-n}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)}{|x-y|^{n-1}}\,{\rm d}y\\ & \qquad+\frac{1}{nw_n}\int_\Omega\frac{v(y)}{|x-y|^{n-1}}\left|\nabla \left(X_1^{\frac{1-n}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\right)\right|\,{\rm d}y. \end{align*}

By proposition 2.1, we get

\begin{align*} & \left|\nabla \left(X_1^{\frac{1-n}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\right)\right|\\ & \quad\leq\frac{1}{|y|}X_1^{\frac{1}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\\ & \quad \times \left|\frac{n-1}{n} +\frac{1}{n}\sum\limits_{i=2}^{k}Y_i\left(\frac{|y|}{R}\right)+\frac{2}{n}Y_{k+1}\left(\frac{|y|}{R}\right)\right|\\ & \quad\leq C^{'}(k,n)\frac{1}{|y|}X_1^{\frac{1}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right). \end{align*}

Hence we deduce

\begin{align*} \left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|& \leq\frac{1}{nw_n}\int_\Omega\frac{|\nabla v(y)| w_k\left(\frac{|y|}{R}\right)}{|x-y|^{n-1}}\,{\rm d}y+\frac{1}{nw_n}C^{'}(k,n)\\ & \quad \times \int_\Omega\frac{|v(y)|}{|y||x-y|^{n-1}}X_1^{\frac{1}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\,{\rm d}y\\ & :=\frac{1}{nw_n}\left(S(x)+C^{'}(k,n)T(x)\right), \end{align*}

where

\[ S(x)=\int_\Omega\frac{|\nabla v(y)| w_k\left(\frac{|y|}{R}\right)}{|x-y|^{n-1}}\,{\rm d}y, \]

and

\[ T(x)=\int_\Omega\frac{|v(y)|}{|y||x-y|^{n-1}}X_1^{\frac{1}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\,{\rm d}y. \]

Then for $q>n$, one has

(3.2)\begin{equation} \left\|uY_{k+1}^{\frac{2}{n}}\right\|_{L^{q}(\Omega)}\leq \frac{1}{nw_n}\left(\|S\|_{L^{q}(\Omega)}+C^{'}(k,n)||T||_{L^{q}(\Omega)}\right). \end{equation}

Define $r$ by $\frac {1}{n}+\frac {1}{r}=1+\frac {1}{q}$. In order to estimate $\|S\|_{L^{q}(\Omega )}$, we write

\begin{align*} \frac{|\nabla v(y)|w_k\left(\frac{|y|}{R}\right)}{|x-y|^{n-1}}& =\left(\frac{1}{|x-y|^{(n-1)r}}\right)^{\frac{1}{r}-\frac{1}{q}} \left(|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)\right)^{\frac{1}{n}-\frac{1}{q}}\\ & \quad \times \left(\frac{|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)}{|x-y|^{(n-1)r}}\right)^{\frac{1}{q}}, \end{align*}

and define

\[ h_r(x):=\int_{\Omega}\frac{1}{|x-y|^{(n-1)r}}\,{\rm d}y. \]

Then by Hölder's inequality, we get

\[ S(x)\leq h_r(x)^{\frac{1}{r}-\frac{1}{q}} \left(\int_\Omega|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)\,{\rm d}y\right)^{\frac{1}{n}-\frac{1}{q}} \left(\int_\Omega\frac{|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)}{|x-y|^{(n-1)r}}\,{\rm d}y\right)^{\frac{1}{q}}. \]

Integrating $S(x)$ and using Tonelli’ Theorem, one has

(3.3)\begin{align} \|S\|_{L^{q}(\Omega)}& \leq \|h_r\|_{L^{\infty}(\Omega)}^{1-\frac{1}{n}} \left(\int_\Omega|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)\,{\rm d}y\right)^{\frac{1}{n}-\frac{1}{q}} \notag\\ & \quad \times \left(\int_\Omega|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)h_r(y)\,{\rm d}y\right)^{\frac{1}{q}}\nonumber\\ & \leq \|h_r\|_{L^{\infty}(\Omega)}^{\frac{1}{r}}\left(\int_\Omega|\nabla v(y)|^{n}w_k^{n}\left(\frac{|y|}{R}\right)\,{\rm d}y\right)^{\frac{1}{n}}. \end{align}

From theorem 2.4, we get

(3.4)\begin{equation} \|S\|_{L^{q}(\Omega)}\leq \frac{1}{(C_1(n))^{\frac{1}{n}}}\|h_r\|_{L^{\infty}(\Omega)}^{\frac{1}{r}}(I_k(u))^{\frac{1}{n}}.\end{equation}

To estimate $\|T\|_{L^{q}(\Omega )}$, we use similar steps. Firstly, we write that

\begin{align*} & \frac{|v(y)|}{|y||x-y|^{n-1}}X_1^{\frac{1}{n}}\left(\frac{|y|}{R}\right)Y_k^{\frac{1}{n}}\left(\frac{|y|}{R}\right)X_{k+1}^{\frac{2}{n}}\left(\frac{|y|}{R}\right)\\ & \quad=\left(\frac{1}{|x-y|^{(n-1)r}}\right)^{\frac{1}{r}-\frac{1}{q}} \left(\frac{|v(y)|^{n}}{|y|^{n}}X_1\left(\frac{|y|}{R}\right)Y_k\left(\frac{|y|}{R}\right)X_{k+1}^{2}\left(\frac{|y|}{R}\right)\right)^{\frac{1}{n}-\frac{1}{q}}\\ & \quad\times\left(\frac{|v(y)|^{n}}{|y|^{n}|x-y|^{(n-1)r}}X_1\left(\frac{|y|}{R}\right)Y_k\left(\frac{|y|}{R}\right)X_{k+1}^{2}\left(\frac{|y|}{R}\right)\right)^{\frac{1}{q}} \end{align*}

Applying H$\ddot {\mbox {o}}$lder's inequality and taking the $L^{q}$-norm of the both sides, we obtain

\begin{align*} \|T\|_{L^{q}(\Omega)}& \leq\|h_r\|_{L^{\infty}(\Omega)}^{\frac{1}{r}} \left(\int_{\Omega}\frac{|v(y)|^{n}}{|y|^{n}}X_1\left(\frac{|y|}{R}\right)Y_k\left(\frac{|y|}{R}\right)X_{k+1}^{2}\left(\frac{|y|}{R}\right)\,{\rm d}y\right)^{\frac{1}{n}}\\ & =\|h_r\|_{L^{\infty}(\Omega)}^{\frac{1}{r}}\left(\int_{\Omega}\frac{|u(y)|^{n}}{|y|^{n}}X_1^{n}\left(\frac{|y|}{R}\right)Y_k^{2}\left(\frac{|y|}{R}\right)X_{k+1}^{2}\left(\frac{|y|}{R}\right)\,{\rm d}y\right)^{\frac{1}{n}}. \end{align*}

Using the conclusion of proposition 2.2, one has

(3.5)\begin{equation} \|T\|_{L^{q}(\Omega)}\leq 2^{\frac{1}{n}}\left(\frac{n}{n-1}\right)^{\frac{n-1}{n}} \|h_r\|_{L^{\infty}(\Omega)}^{\frac{1}{r}}\left(I_k(u)\right)^{\frac{1}{n}}. \end{equation}

Thus using the following estimate ([Reference Mallick and Tintarev19],(3.4))

(3.6)\begin{equation} \|h_r\|_{L^{\infty}(\Omega)}^{\frac{1}{r}}\leq w_n^{1-\frac{1}{n}}\left(1+\frac{(n-1)q}{n}\right)^{1-\frac{1}{n}+\frac{1}{q}}{\rm vol}(\Omega)^{\frac{1}{q}}, \end{equation}

we get

(3.7)\begin{equation} \left\|uY_{k+1}^{\frac{2}{n}}\right\|_{L^{q}(\Omega)}\leq C(k,n)\left(1+\frac{(n-1)q}{n}\right)^{1-\frac{1}{n}+\frac{1}{q}}{\rm vol}(\Omega)^{\frac{1}{q}}\left(I_k(u)\right)^{\frac{1}{n}}, \end{equation}

where $C(k,\,n)$ is defined by $C(k,\,n)= (\frac {1}{C_1(n)^{\frac {1}{n}}}+2^{\frac{1}{n}}C^{'}(k,\,n)(\frac {n}{n-1})^{\frac {n-1}{n}})\frac {1}{n w_n^{\frac {1}{n}}}$. Thus, we complete the proof of proposition 3.1.

In the following, we prove theorem 1.1.

Proof. Let $u\in W_0^{1,n}(\Omega )$ such that $I_k(u)\leq 1$. Applying proposition 3.1 with $q=\frac {ns}{n-1},\, s\in \{n,\,n+1,\,\cdots \}$, we have

\[ \int_\Omega\left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|^{\frac{ns}{n-1}}\,{\rm d}x\leq \left(C(k,n)\right)^{\frac{ns}{n-1}}{\rm vol}(\Omega)(1+s)^{1+s}. \]

Given $C>0$, multiplying both sides by $\frac {C^{s}}{s!}$ and adding from $n$ to $m$ $(m\geq n)$, it yields

\begin{align*} & \int_\Omega\sum_{s=n}^{m}\frac{1}{s!}\left[C\left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|^{\frac{n}{n-1}}\right]^{s}\,{\rm d}x\\ & \quad \leq\sum_{s=n}^{m}\left(C\left(C(k,n)\right)^{\frac{n}{n-1}}\right)^{s}{\rm vol}(\Omega)\frac{(1+s)^{1+s}}{s!}. \end{align*}

Clearly, the right side above inequality converges as $m\to \infty$ if and only if

(3.8)\begin{equation} C<\frac{1}{e\left(C(k,n)\right)^{\frac{n}{n-1}}}.\end{equation}

While each term of the finite sum

(3.9)\begin{equation} S=\int_\Omega\sum_{s=0}^{n-1}\frac{1}{s!}\left[C\left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|^{\frac{n}{n-1}}\right]^{s}\,{\rm d}x\end{equation}

is bounded by a constant depending only on $k,\,n$ due to Hölder inequality. And so, there exist constants $A(k,\,n)$ and $B(k,\,n)$ such that for any $0< C< A(k,\,n)$, there has

(3.10)\begin{equation} \int_\Omega\sum_{s=0}^{\infty}\frac{1}{s!}\left[C\left|u(x)Y_{k+1}^{\frac{2}{n}}\left(\frac{|x|}{R}\right)\right|^{\frac{n}{n-1}}\right]^{s}\,{\rm d}x\leq B(k,n){\rm vol}(\Omega). \end{equation}

The left side inequality (3.10) is the power series expansion of $e^{C\left |u(x)Y_{k+1}^{\frac{2}{n}}(\frac {|x|}{R})\right |^{\frac {n}{n-1}}}$. Thus, theorem 1.1 is valid, and for $\beta >\frac {2}{n}$, the result is also valid because of $X_{k+1}(\frac {|x|}{R})<1$.

Acknowledgments

The first author was supported by National Natural Science Foundation of China (No. 11601173 and No. 61772223).

References

Adimurthi, S. F. and Tertikas, A.. on the best constant of Hardy-Sobolev inequalities. Nonlinear Anal. 70 (2009), 28262833.CrossRefGoogle Scholar
Adimurthi, N. C. and Ramaswamy, M.. An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc. 130 (2002), 489505.CrossRefGoogle Scholar
Adimurthi, K. S.. Existence and non-existence of the first eigenvalue of the perturbed Hardy-Sobolev operator. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 10211043.CrossRefGoogle Scholar
Barbatis, G., Filippas, S. and Tertikas, A.. A unified approach to improved $L_p$ Hardy inequalities with best constants. Trans. Amer. Math. Soc. 356 (2004), 21692196.CrossRefGoogle Scholar
Barbatis, G., Filippas, S. and Tertikas, A.. Series expansion for $L_p$ Hardy inequalities. Indiana Univ. Math. J. 52 (2003), 171190.Google Scholar
Brezis, H. and Marcus, M.. Hardy's inequalities revisited. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 25 (1997), 217237.Google Scholar
Brezis, H., Marcus, M. and Shafrir, I.. Extremal functions for Hardy's inequality with weight. J. Funct. Anal. 171 (2000), 177191.CrossRefGoogle Scholar
Brezis, H. and Vazquez, J. L.. Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10 (1997), 443469.Google Scholar
Chaudhuri, N. and Ramaswamy, M.. Existence of positive solutions of some semilinear elliptic equations with singular coefficients. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 12751295.CrossRefGoogle Scholar
Davies, E. B.. A review of Hardy inequalities. Oper. Theory Adv. Appl. 110 (1999), 5567.Google Scholar
Filippas, S. and Tertikas, A.. Optimizing improved Hardy inequalities. J. Funct. Anal. 192 (2002), 186233.CrossRefGoogle Scholar
Gazzola, F., Grunau, H. C. and Mitidieri, E.. Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc. 356 (2004), 21492168.CrossRefGoogle Scholar
Gkikas, K. T. and Psaradakis, G.. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310Google Scholar
Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order, (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
Hardy, G., Littlewood, J. E. and Pólya, G.. Inequalities (Cambridge University Press, Cambridge, 1952).Google Scholar
Leray, J.. Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933), 182.Google Scholar
Li, Y. and Ruf, B.. A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb {R}^{n}$. Indiana Univ. Math. J. 57 (2008), 451480.CrossRefGoogle Scholar
Moser, J.. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 (1971), 10771092.CrossRefGoogle Scholar
Mallick, A. and Tintarev, C.. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034.CrossRefGoogle Scholar
Opic, B. and Kufner, A., Hardy-type inequalities, Pitman Research Notes in Mathematics series, Volume 219 (Longman Scientific and Technical, Harlow, 1990).Google Scholar
Psaradakis, G. and Spector, D.. A Leray-Trudinger inequality. J. Funct. Anal. 269 (2015), 215228.CrossRefGoogle Scholar
Ruf, B.. A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb {R}^{2}$. J. Funct. Anal. 219 (2005), 340367.CrossRefGoogle Scholar
Tintarev, C.. Trudinger-Moser inequality with remainder terms. J. Funct. Anal. 266 (2014), 5566.CrossRefGoogle Scholar
Vazquez, J. L. and Zuazua, E.. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173 (2000), 103153.CrossRefGoogle Scholar