Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T10:00:40.103Z Has data issue: false hasContentIssue false

Realisation of ordinary differential equations by retarded functional differential equations in neighbourhoods of equilibrium points*

Published online by Cambridge University Press:  14 November 2011

Teresa Faria
Affiliation:
Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa, 1700 Lisboa, Portugal; CAPS, Complexo Interdisciplinar I do INIC, 1096 Lisboa Codex, Portugal
Luis T. Magalhães
Affiliation:
Departamento de Matemática, IST, Universidade Técnica de Lisboa, 1096 Lisboa Codex, Portugal; Complexo Interdisciplinar I do INIC, 1096 Lisboa Codex, Portugal

Abstract

This paper addresses the realisation of ordinary differential equations (ODEs) by retarded functional differential equations (FDEs) in finite-dimensional invariant manifolds, locally around equilibrium points. A necessary and sufficient condition for realisability of C1 vector fields is established in terms of their linearisations at the equilibrium.

It is also shown that any arbitrary finite jet of vector fields of ODEs can be realised without any further restrictions than those imposed by the realisability of its linear term, a fact of relevance for discussing the flows defined by FDEs around singularities, and their bifurcations. Besides, it is proved that such a realisation can always be achieved with FDEs whose nonlinearities are defined in terms of a finite number of delayed values of the solutions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Arnold, V. I.. Chapitres Supplémentaires de la Théorie des Equations Différentielles Ordinaires (Moscow: Editions MIR, 1980).Google Scholar
2Bibikov, Yu. N.. Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics 702 (Berlin: Springer, 1979).CrossRefGoogle Scholar
3Brjuno, A. D.. The normal form of differential equations. Soviet Math. Dokl. 5 (1964), 1105–8.Google Scholar
4Brjuno, A. D.. Analytical form of differential equations. Trans. Moscow Math. Soc. 25 (1971), 131288.Google Scholar
5Chow, S.-N. and Hale, J. K.. Methods of Bifurcation Theory (New York: Springer, 1982).CrossRefGoogle Scholar
6Fiedler, B. and Poláčik, P.. Complicated dynamics of scalar reaction diffusion equations with a nonlocal term. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 167–92.CrossRefGoogle Scholar
7Gukenheimer, J. and Holmes, P.. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (New York: Springer, 1983).CrossRefGoogle Scholar
8Hale, J. K.. Theory of Functional Differential Equations (Berlin: Springer, 1977).CrossRefGoogle Scholar
9Hale, J. K.. Flows on centre manifolds for scalar functional differential equations. Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), 193201.CrossRefGoogle Scholar
10Hale, J. K.. Local flows for functional differential equations. In Multiparameter Bifurcation Theory, eds Golubitsky, M. and Guckenheimer, J., Contemporary Mathematics 56, pp. 185–92 (Providence, R.I.: American Mathematical Society, 1986).CrossRefGoogle Scholar
11Hautus, M. L. J.. Stabilization controllability and observability of linear autonomous systems. Indag. Math. 32(1970), 448–55.CrossRefGoogle Scholar
12Pandolfi, L.. Feedback stabilization of functional differential equations. Boll. Un. Mat. Ital. 11 (1975), 626–35.Google Scholar
13Poláčik, P.. Complicated dynamics in scalar semilinear parabolic equations in higher space dimension. J. Differential Equations 89 (1991), 244–71.CrossRefGoogle Scholar
14Poláčik, P.. Realization of any finite jet in a scalar semilinear parabolic equation on the ball in ℝ3. Ann. Scuola Norm. Sup. Pisa Ser. IV 18 (1991), 83102.Google Scholar
15Poláčik, P.. Imbedding of any vector field in a scalar semilinear parabolic equation, Proc. Amer. Math. Soc. 115 (1992), 1001–8.CrossRefGoogle Scholar
16Siegel, C. L.. Über die normal form anlytischer Differential—Gleichungen in der Nähe einer Gleichgewichtlösung. Nach. Akad. Wiss. Göttingen, math.-phys. Kl. (1952), 2130.Google Scholar
17Siegel, C. L. and Moser, J.. Lectures on Celestial Mechanics (Berlin: Springer, 1971).CrossRefGoogle Scholar
18Wolovich, W. A.. Linear Multivariable Systems (New York: Springer, 1974).CrossRefGoogle Scholar