Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-16T17:14:00.473Z Has data issue: false hasContentIssue false

A rank-one perturbation result on the spectra of certain operators

Published online by Cambridge University Press:  14 November 2011

R. Datko
Affiliation:
Department of Mathematics, Georgetown University, Washington, D. C. 20057, U.S.A.

Synopsis

In this note we show that certain perturbations, involving rank-one stabilising operators, which correspond to small delays in some feedback control problems, shift a part of the point spectrum of the unperturbed operator into the right-half plane.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Courant, R. and Hilbert, D.. Methods of Mathematical Physics, Vol. I (New York: Interscience, 1966).Google Scholar
2Datko, R., Lagnese, J. and Polis, M. P.. An example on the Effect of Time Delays in Boundary Feedback of Wave Equations. SIAM J. Control Optim. 24 (1986), 152156.Google Scholar
3Datko, R.. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988), 697713.Google Scholar
4Datko, R.. Exponential Stability and rank-one perturbations of certain conservative second-order differential equations (submitted).Google Scholar
5Hille, E.. Lectures on Ordinary Differential Equations (Reading, Pa.: Addison-Wesley, 1969).Google Scholar
6Lions, J. L.. Contrôle Optimal de Systémes Gouvernés par des Équations aux Dérivées Partielles (Paris: Dunod, 1968).Google Scholar
7Taylor, A. E.. Introduction to Functional Analysis (New York: John Wiley, 1958).Google Scholar
8Tychonoff, A. M. and Samarski, A. A.. Differentialgleichungen der Mathematischen Physick (Berlin: Veb Deutscher Verlag der Wissenschaften, 1959).Google Scholar