No CrossRef data available.
Article contents
A rank-one convex, nonpolyconvex isotropic function on
$\textrm {GL}^{\!+}(2)$ with compact connected sublevel sets
Published online by Cambridge University Press: 02 February 2022
Abstract
According to a 2002 theorem by Cardaliaguet and Tahraoui, an isotropic, compact and connected subset of the group $\textrm {GL}^{\!+}(2)$ of invertible
$2\times 2$ - - matrices is rank-one convex if and only if it is polyconvex. In a 2005 Journal of Convex Analysis article by Alexander Mielke, it has been conjectured that the equivalence of rank-one convexity and polyconvexity holds for isotropic functions on
$\textrm {GL}^{\!+}(2)$ as well, provided their sublevel sets satisfy the corresponding requirements. We negatively answer this conjecture by giving an explicit example of a function
$W\colon \textrm {GL}^{\!+}(2)\to \mathbb {R}$ which is not polyconvex, but rank-one convex as well as isotropic with compact and connected sublevel sets.
Keywords
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 152 , Issue 2 , April 2022 , pp. 356 - 381
- Copyright
- Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline406.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline407.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline408.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline409.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline410.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline411.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline412.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline413.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline414.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline415.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220331100724766-0625:S0308210521000093:S0308210521000093_inline416.png?pub-status=live)