Radially symmetric critical points of non-convex functionals
Published online by Cambridge University Press: 12 November 2008
Abstract
We investigate critical points of the functional
over a ball in ℝn. Here, W is radially symmetric but not convex. We embed the functional into a family of functionals
where E0,0(u) = E(u). A global bifurcation analysis yields a branch of non-trivial critical points depending on λ and positive ε, where we can set λ = 0. The geometric properties preserved on that branch, due to the maximum principle, prove compactness such that the singular limit as ε ↘ 0 exists. Under natural conditions on W and G the critical point obtained in this way is a minimizer of the original functional. That plan can be carried out only under the restriction of radial symmetry, since the maximum principle applies only to special elliptic equations of fourth order. That restriction, however, is not essential since every minimizer of the functional is radially symmetric.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 138 , Issue 6 , December 2008 , pp. 1261 - 1280
- Copyright
- Copyright © Royal Society of Edinburgh 2008
- 2
- Cited by