Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T16:42:50.790Z Has data issue: false hasContentIssue false

A quasi-periodic boundary value problem for the Laplacian and the continuation of its resolvent

Published online by Cambridge University Press:  14 November 2011

H. D. Alber
Affiliation:
Institut für Angewandte Mathematik, Bonn

Synopsis

A quasi-periodic boundary value problem for the Helmholtz equation in an unbounded domain is considered. This problem arises from scattering of plane waves by periodic structures.

Existence and uniqueness theorems are proved, and the continuation of the resolvent of this problem to a Riemannian surface is constructed. This construction makes no use of the continuation of the resolvent kernel but runs along the following lines:

First a family of differential operators is defined, which is holomorphic in a generalized sense. Then, using a result from analytic perturbation theory about families of operators with compact resolvent, it is shown that the family of inverses of these differential operators gives the desired continuation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Agmon, S.. Elliptic boundary value problems (New York: Van Nostrand, 1965).Google Scholar
2Behnke, H. and Sommer, F.. Theorie der analytischen Funktionen einer Komplexen Veranderlichen (Berlin: Springer, 1962).CrossRefGoogle Scholar
3Carlson, J. F. and Heins, A. E.. The reflection of electromagnetic waves by an infinite set of plates. Quart. Appl. Math. 4 (1946), 313329.CrossRefGoogle Scholar
4Dolph, C. L., McLeod, J. B. and Thoe, D.. The analytic continuation of the resolvent kernel and scattering operator associated with the Schrodinger operator. J. Math. Anal. Appl. 16 (1966), 311332.CrossRefGoogle Scholar
5Eidus, D. M.. The principle of limiting absorption. Amer. Math. Soc. Transl. 47 (1965), 157191.Google Scholar
6Goldstein, C. I.. Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries I. Trans. Amer. Math. Soc. 135 (1969), 131.CrossRefGoogle Scholar
7Heins, A. E.. The Green's function for periodic structures in diffraction theory with an application to parallel plate media I. J. Math. Mech. 6 (1957), 401426.Google Scholar
8Jones, D. S.. The eigenvalues of ∇2u + λu = 0 when the boundary conditions are given on semi-infinite domains. Math. Proc. Cambridge Philos. Soc. 49 (1953), 668684.CrossRefGoogle Scholar
9Kato, T.. Perturbation theory for linear operators (New York: Springer, 1966).Google Scholar
10Lyford, W. C.. Spectral analysis of the Laplacian in domains with cylinders. Math. Ann. 218 (1975), 229251.CrossRefGoogle Scholar
11Meister, E.. Zum Dirichlet-Problem der Helmholtzschen Schwingungsgleichung für ein gestaffeltes Streckengitter. Arch. Rational Mech. Anal. 10 (1962), 67100.CrossRefGoogle Scholar
12Meister, E.. Die Beugung ebener elektromagnetischer Wellen an einem Parallelplattengitter. Z. Angew. Math. Mech. 45 (1965), T 5759.Google Scholar
13Meister, E.. Randwertprobleme aus der Beugungstheorie ebener Wellen an Parallelplattengittem. Methoden und Verfahren der Mathematischen Physik, 3, 85116 (Mannheim, Bibliographisches Inst., (1970).Google Scholar
14Narasimhan, R.. Several complex variables (Chicago: Univ. Press, 1971).Google Scholar
15Rellich, F., Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten. Jber. Deutsch. Math.-Verein. 53 (1943), 5764.Google Scholar
16Steinberg, S.. Meromorphic families of compact operators. Arch. Rational Mech. Anal. 31 (1968/1969), 372379.CrossRefGoogle Scholar
17Vainberg, B. R.. On the analytical properties of the resolvent for a certain class of operatorpencils. Mat. Sb. 77 (1968), 259296; English transl. Math. USSR-Sb. 6 (1968), 241–273.Google Scholar
18Vainberg, B. R. On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as t → ∞ of solutions of non stationary problems. Uspehi Mat. Nauk 30 (1975), 355; English transl. Russian Math. Surveys 30 (1975), 1–58.Google Scholar
19Wilcox, C. H.. Scattering theory for the d'Alembert equation in exterior domains. Lecture Notes in Mathematics 442 (Berlin: Springer, 1975)Google Scholar