Published online by Cambridge University Press: 23 January 2019
We discuss a variational model, given by a weighted sum of perimeter, bending and Riesz interaction energies, that could be considered as a toy model for charged elastic drops. The different contributions have competing preferences for strongly localized and maximally dispersed structures. We investigate the energy landscape in dependence of the size of the ‘charge’, that is, the weight of the Riesz interaction energy.
In the two-dimensional case, we first prove that for simply connected sets of small elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this result, we show that for small charge the only minimizers of the full variational model are either balls or centred annuli. We complement these statements by a non-existence result for large charge. In three dimensions, we prove area and diameter bounds for configurations with small Willmore energy and show that balls are the unique minimizers of our variational model for sufficiently small charge.