Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T01:35:34.167Z Has data issue: false hasContentIssue false

Qualitative properties of nonlinear ordinary differential equations

Published online by Cambridge University Press:  14 February 2012

Nelson Onuchic
Affiliation:
Instituto de Ciências Matemáticas de São Carlos, U.S.P., Brasil
Plácido Z. Táboas
Affiliation:
Instituto de Ciências Matemáticas de São Carlos, U.S.P., Brasil Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, U.S.A.

Synopsis

The perturbed linear ordinary differential equation

is considered. Adopting the same approach of Massera and Schäffer [6], Corduneanu states in [2] the existence of a set of solutions of (1) contained in a given Banach space. In this paper we investigate some topological aspects of the set and analyze some of the implications from a point of view ofstability theory.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Coppel, W. A.. Stability and Asymptotic Behaviour of Differential Equations (Boston:Heath, 1965).Google Scholar
2Corduneanu, C.. Sur certains systèmes différentiels nonlinéaires. An. Sti. Univ. “Al. I. Cuza”. Iasi Sect. la Mat. 6 (1960), 257260.Google Scholar
3Hale, J. K.. Ordinary Differential Equations (New York: Interscience, 1969).Google Scholar
4Hallam, T. G. and Onuchic, N.. Asymptotic relations between perturbed linear systems of ordinary differential equations. Pacific J. Math. 45 (1973), 187199.Google Scholar
5Hartman, P.. Ordinary Differential Equations (New York: Wiley, 1964).Google Scholar
6Massera, J. L. and Schäffer, J. J.. Linear differential equations and functional analysis I. Ann. of Math. 67 (1958), 517573.Google Scholar
7Onuchic, N.. Comportamento assintótico de solucões de um sistema da equacões diferenciais ordinárias (Sao Paulo Univ. Livre Docencia Thesis,1965).Google Scholar
8Perron, O.. Die stabilitätsfrage bei differentialgleichungen. Math. Z. 32(1930), 703728.CrossRefGoogle Scholar
9Strauss, A. and Yorke, J. A.. Perturbation theorems for ordinary differential equations.J.Differential Equations 3 (1967), 1530.Google Scholar
10Szmydt, Z.. Sur l'allure asymptotic des intégrales de certains systemes d'équations differentielles nonlineaires. Ann. Polon. Math. 1 (1955), 253276.Google Scholar