No CrossRef data available.
Article contents
Projective modules of finite groups with elementary abelian Sylow 3-subgroups of order 9 in characteristic 3
Published online by Cambridge University Press: 14 November 2011
Abstract
Let G be any finite group with elementary abelian Sylow 3-subgroups of order 9, and let F be any field of characteristic 3. Then, the Loewy length of the projective cover of the trivial FG-module is at least 5. This lower bound is the best possible.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 124 , Issue 1 , 1994 , pp. 161 - 168
- Copyright
- Copyright © Royal Society of Edinburgh 1994
References
1Benson, D.. Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics 1081 (Berlin: Springer, 1984).Google Scholar
2Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.. Atlas of Finite Groups (Oxford: Clarendon Press, 1985).Google Scholar
3Dornhoff, L.. Group Representation Theory, parts A and B (New York: Dekker, 1971–1972).Google Scholar
4Enomoto, H.. The characters of the finite symplectic group Sp(4, q), q = 2f. Osaka J. Math. 9 (1972), 75–94.Google Scholar
5Feit, W.. The Representation Theory of Finite Groups (Amsterdam: North-Holland, 1982).Google Scholar
6Geek, M.. Irreducible Brauer characters of the 3-dimensional special unitary groups in non-defining characteristic. Comm. Algebra 18 (1990), 563–584.CrossRefGoogle Scholar
7Gorenstein, D.. Finite Simple Groups, an Introduction to Their Classification (New York: Plenum Press, 1982).Google Scholar
8Gow, R.. Products of two involutions in classical groups of characteristic 2. J. Algebra 71 (1981), 583–591.CrossRefGoogle Scholar
9Gow, R.. Properties of the characters of the finite general linear group related to the transposeinverse involution. Proc. London Math. Soc. (3) 47 (1983), 493–506.CrossRefGoogle Scholar
10Humphreys, J. F.. The modular characters of the Higman-Sims simple group. Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 319–335.CrossRefGoogle Scholar
11James, G. D.. The modular characters of the Mathieu groups. J. Algebra 27 (1973), 57–111.CrossRefGoogle Scholar
12Kiyota, M.. On 3-blocks with an elementary abelian defect group of order 9. J. Fac. Sci. Univ. Tokyo 31 (1984), 33–58.Google Scholar
13Koshitani, S.. The principal block ideals of group algebras of finite groups over a field of characteristic 3. (International Conference on Representations of Algebras VI, Carleton University, Ottawa, 1992; preprint, Chiba University, 1992.)Google Scholar
14Landrock, P.. Finite Group Algebras and their Modules, London Mathematical Society Lecture Note Series 84 (Cambridge: Cambridge University Press, 1983).CrossRefGoogle Scholar
15Michler, G. O.. Blocks and centers of group algebras. Lectures on rings and modules. Lecture Notes in Mathematics 246, 429–563 (Berlin: Springer, 1972).Google Scholar
17M, W.üller. Unzerlegbare Moduln über artinschen Ringen. Math. Z. 137 (1974), 197–226.Google Scholar
18Robinson, G. R.. On projective summands of induced modules. J. Algebra 122 (1989), 106–111.CrossRefGoogle Scholar
19Schneider, G. J. A.. PSL(3, 4) in characteristic 3. Comm. Algebra 15 (1987), 1543–1547.CrossRefGoogle Scholar
20Siegel, S.. Projective modules for A9 in characteristic three. Comm. Algebra 19 (1991), 3099–3117.CrossRefGoogle Scholar
21Simpson, W. A. and Frame, J. S.. The character tables for SL (3, q), SU(3, q 2), PSL (3, q), PSU(3, q 2). Canad. J. Math. 25 (1973), 486–494.CrossRefGoogle Scholar
22Steinberg, R.. The representations of GL (3, q), GL (4, q), PGL (3, q), and PGL (4, q). Canad. J. Math. 3(1951), 225–235.CrossRefGoogle Scholar
25Waki, K.. On ring-theoretical structure of 3-blocks of finite groups with elementary abelian defect groups of order 9 (Master Thesis, Chiba University, Japan, 1989).Google Scholar
26Waki, K.. The Loewy structure of the projective indecomposable modules for the Mathieu groups incharacteristic 3. Comm. Algebra 21 (1993), 1457–1485.CrossRefGoogle Scholar
27Waki, K.. The projective indecomposable modules for the Higman-Sims groups in characteristic 3. Comm. Algebra 21 (1993) 3475–3487.CrossRefGoogle Scholar
28Webb, P. J.. The Auslander-Reiten quiver of a finite group. Math. Z. 179 (1982), 97–121.CrossRefGoogle Scholar
29White, D. L.. Decomposition numbers of Sp(4, q) for primes dividing q ± 1. J. Algebra 132 (1990), 488–500.CrossRefGoogle Scholar