Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T03:04:55.961Z Has data issue: false hasContentIssue false

Positivity results for determinantal operators

Published online by Cambridge University Press:  14 November 2011

Paul Binding
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Alberta, Canada
Patrick J. Browne
Affiliation:
Department of Mathematics and Statistics, University of Calgary, Alberta, Canada

Synopsis

Let Vrs, s = 1 …, K be Hermitian operators on Hilbert spaces Hr, r = 1, …, k. For x = x1⊗…⊗xkH1⊗…⊗Hk we define Δx by the formal determinantal expansion Δx = ⊗det{Vrsxr}. Δ is extended to all of H by linearity and continuity. The paper presents results concerning positivity properties of Δ on decomposable tensors.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Atkinson, F. V.Multiparameter spectral theory. Bull. Amer. Math. Soc. 74 (1968), 127.CrossRefGoogle Scholar
2Atkinson, F. V.Multiparameter Eigenvalue Problems. I: Matrices and Compact Operators (New York: Academic Press, 1972).Google Scholar
3Binding, P. and Browne, P. J.A variational approach to multi-parameter eigenvalue problems for matrices. SIAM J. Math. Anal, 8, (1977), 763777.CrossRefGoogle Scholar
4Borsuk, K.Drei Sätze über die n-dimensionale euklidische Sphäre. Fund. Math. 20 (1933), 177190.CrossRefGoogle Scholar
5Browne, P. J.Multi-parameter spectral theory. Indiana Univ. Math. J. 24 (1974), 249257.CrossRefGoogle Scholar
6Källström, A. and Sleeman, B. D.Solvability of a linear operator system. J. Math. Anal. Appl. 55 (1976), 785793.CrossRefGoogle Scholar
7Sleeman, B. D.Singular linear differential operators with many parameters. Proc. Roy. Soc. Edinburgh Sect. A 71 (1973), 199232.Google Scholar