Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T09:02:11.210Z Has data issue: false hasContentIssue false

Polynomial interpolation at points of a geometric mesh on a triangle

Published online by Cambridge University Press:  14 November 2011

S. L. Lee
Affiliation:
School of Mathematical Sciences, University of Science of Malaysia, Penang, Malaysia 11800
G. M. Phillips
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, KY16 9SS, Scotland, U.K.

Synopsis

In an earlier paper [8], I. J. Schoenberg discussed polynomial interpolation in one dimension at the points of a geometric progression, which was originally proposed by James Stirling. In the present paper, these ideas are generalised to two-dimensional polynomial interpolation at the points of a geometric mesh on a triangle. A Lagrange form is obtained for this interpolating polynomial and an algorithm is derived for evaluating it efficiently.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bos, L. P.. Bounding the Lebesgue function for Lagrange interpolation in a simplex. J. Approx Theory 38 (1983), 4359.CrossRefGoogle Scholar
2Lee, S. L. and Phillips, G. M.. Interpolation on the triangle. Comm. Appl. Numer. Methods 3 (1987), 271276.CrossRefGoogle Scholar
3Mitchell, A. R. and Phillips, G. M.. Construction of basis functions in the finite element method. BIT12 (1972), 8189.Google Scholar
4Olmsted, C.. Two formulas for the general multivariate polynomial which interpolates a regular grid on a simplex. Math. Comp. 47 (1986), 275284.CrossRefGoogle Scholar
5Polya, G. and Szego, G.. Problems and Theorems in Analysis I. (Berlin: Springer, 1972).Google Scholar
6Runge, C.. Uber eine numerische Berechnung der Argumente der cyclischen, hyperbolischen und logarithmischen Funktionen. Ada Math. 15 (1891), 221247.Google Scholar
7Schellbach, K. H.. Die Lehre von den elliptischen Integralen und den Theta-Funktionen (Berlin: Georg Reimer, 1864).CrossRefGoogle Scholar
8Schoenberg, I. J.. On polynomial interpolation at the points of a geometric progression. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 195207.CrossRefGoogle Scholar
9Stirling, James. The differential method or a Treatise concerning summation and interpolation of infinite series (London: E. Cave, 1749). (Translation by F. Holliday of the original Latin edition of 1730.)Google Scholar
10Stancu, D. D.. The remainder of certain linear approximation formulas in two variables. SIAM J. Numer. Anal. Ser. B 1 (1964), 137163.Google Scholar