Article contents
A pointwise characterisation of the PDE system of vectorial calculus of variations in L∞
Published online by Cambridge University Press: 01 February 2019
Abstract
Let n, $N \in {\open N}$ with
$\Omega \subseteq {\open R}^n$ open. Given
${\rm H} \in C^2(\Omega \times {\open R}^N \times {\open R}^{Nn})$, we consider the functional
1
$${\rm E}_\infty (u,{\rm {\cal O}})\, : = \, \mathop {{\rm ess}\,\sup}\limits_{\rm {\cal O}} {\rm H}(\cdot, u,{\rm D}u),\quad u\in W_{{\rm loc}}^{1,\infty} (\Omega, {\open R}^N),\quad {\rm {\cal O}}{\Subset}\Omega.$$
$L^\infty $ is
2
$$\left\{\matrix{{\rm H}_{P}(\cdot, u, {\rm D}u)\, {\rm D}\left({\rm H}(\cdot, u, {\rm D} u)\right) = \, 0, \hfill \cr {\rm H}(\cdot, u, {\rm D} u) \, [\![{\rm H}_{P}(\cdot, u, {\rm D} u)]\!]^\bot \left({\rm Div}\left({\rm H}_{P}(\cdot, u, {\rm D} u)\right)- {\rm H}_{\eta}(\cdot, u, {\rm D} u)\right) = 0,\hfill}\right.$$
$[\![A]\!]^\bot := {\rm Proj}_{R(A)^\bot }$. Herein we establish that generalised solutions to (2) can be characterised as local minimisers of (1) for appropriate classes of affine variations of the energy. Generalised solutions to (2) are understood as
${\cal D}$-solutions, a general framework recently introduced by one of the authors.
Keywords
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 150 , Issue 4 , August 2020 , pp. 1653 - 1669
- Copyright
- Copyright © Royal Society of Edinburgh 2019
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200710030041298-0764:S0308210518000896:S0308210518000896_inline7.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20200710030041298-0764:S0308210518000896:S0308210518000896_inline8.png?pub-status=live)
- 5
- Cited by