Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T02:10:29.526Z Has data issue: false hasContentIssue false

Poincaré duality and resonance varieties

Published online by Cambridge University Press:  13 September 2019

Alexander I. Suciu*
Affiliation:
Department of Mathematics, Northeastern University, Boston, Massachusetts02115, USA ([email protected]) web.northeastern.edu/suciu/

Abstract

We explore the constraints imposed by Poincaré duality on the resonance varieties of a graded algebra. For a three-dimensional Poincaré duality algebra A, we obtain a fairly precise geometric description of the resonance varieties ${\cal R}^i_k(A)$.

Type
Research Article
Copyright
Copyright © 2019 The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Berceanu, B. and Papadima, S.. Cohomologically generic 2-complexes and 3-dimensional Poincaré complexes. Math. Ann. 298(3) (1994) 457480, MR1262770 1.8, 8.2CrossRefGoogle Scholar
2Borel, A. and Harish-Chandra, . Arithmetic subgroups of algebraic groups. Ann. Math. 75(2) (1962) 485535, MR0147566 4.4.10.2307/1970210CrossRefGoogle Scholar
3Buchsbaum, D. and Eisenbud, D.. Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3. Am. J. Math. 99(3) (1977) 447485, MR0453723 7.2.10.2307/2373926CrossRefGoogle Scholar
4Cardinali, I. and Giuzzi, L.. Geometries arising from trilinear forms on low-dimensional vector spaces. Adv. Geom. 19(2) (2019) 269290, MR3940925 7.2.10.1515/advgeom-2018-0027CrossRefGoogle Scholar
5Cohen, A. M. and Helminck, A. G.. Trilinear alternating forms on a vector space of dimension 7. Comm. Algebra 16(1) (1988) 125, MR0921939 4.4, A.Google Scholar
6De Poi, P., Faenzi, D., Mezzetti, E. and Ranestad, K.. Fano congruences of index 3 and alternating 3-forms. Ann. Inst. Fourier 67(5) (2017) 20992165, MR3732686 1.4, 7.2, 8.4, 8.2.10.5802/aif.3131CrossRefGoogle Scholar
7Denham, G. and Suciu, A. I., Algebraic models and cohomology jump loci, preprint 2018.Google Scholar
8Denham, G., Suciu, A. I. and Yuzvinsky, S.. Abelian duality and propagation of resonance. Selecta Math. 23(4) (2017) 23312367, MR3703455 5.1.CrossRefGoogle Scholar
9Dimca, A. and Papadima, S.. Non-abelian cohomology jump loci from an analytic viewpoint. Commun. Contemp. Math. 16(4 2014) 1350025, (47 p). MR3231055 1.1.10.1142/S0219199713500259CrossRefGoogle Scholar
10Dimca, A., Papadima, S. and Suciu, A. I.. Topology and geometry of cohomology jump loci. Duke Math. J. 148(3) (2009) 405457, MR2527322 1.1.10.1215/00127094-2009-030CrossRefGoogle Scholar
11Dimca, A., Papadima, S. and Suciu, A. I.. Quasi-Kähler groups, 3-manifold groups, and formality. Math. Z. 268(1–2) (2011) 169186, MR2805428 8.2.Google Scholar
12Dimca, A. and Suciu, A. I.. Which 3-manifold groups are Kähler groups?. J. Eur. Math. Soc. 11(3) (2009) 521528, MR2505439 8.2.CrossRefGoogle Scholar
13Djoković, D. Ž.. Classification of trivectors of an eight-dimensional real vector space. Linear Multilinear Algebra 13(1) (1983) 339, MR0691457 1.4, 4.4, A.10.1080/03081088308817501CrossRefGoogle Scholar
14Djoković, D. Ž.. Closures of equivalence classes of trivectors of an eight-dimensional complex vector space. Can. Math. Bull. 26(1) (1983) 92100, MR0681957 4.4, A.10.4153/CMB-1983-014-8CrossRefGoogle Scholar
15Draisma, J. and Shaw, R.. Singular lines of trilinear forms. Linear Algebra Appl. 433(3) (2010) 690697, MR2653833 1.2, 6.4, 8.3, 8.7.10.1016/j.laa.2010.03.040CrossRefGoogle Scholar
16Draisma, J. and Shaw, R.. Some noteworthy alternating trilinear forms. J. Geom. 105(1) (2014) 167176, MR3176345 6.3, 6.4, 6.4.Google Scholar
17Eisenbud, D.. The geometry of syzygies, a second course in commutative algebra and algebraic geometry, Grad. Texts in Math., vol. 229, Springer-Verlag, New York, 2005. MR2103875 3.1.Google Scholar
18Falk, M. J.. Arrangements and cohomology. Ann. Combin. 1(2) (1997) 135157, MR1629681 2.3.10.1007/BF02558471CrossRefGoogle Scholar
19Falk, M. J.. Resonance varieties over fields of positive characteristic. Int. Math. Res. Not. IMRN 2007(3) (2007) 25, Art. ID rnm009, MR2337033 2.3.Google Scholar
20Grayson, D. and Stillman, M.. Macaulay2, a software system for research in algebraic geometry, Version 1.14, May 2019, https://faculty.math.illinois.edu/Macaulay2/ A.Google Scholar
21Gromov, M.. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56 (1982) 599, MR0686042 5.3.Google Scholar
22Gurevich, G. B.. Foundations of the theory of algebraic invariants. Groningen: P. Noordhoff Ltd., 1964, MR0183733 1.4, 4.4, A.Google Scholar
23Halperin, S.. Finiteness in the minimal models of Sullivan. Trans. Am. Math. Soc. 230 (1977) 173199, MR0461508 4.2.10.1090/S0002-9947-1977-0461508-8CrossRefGoogle Scholar
24Meyer, D. and Smith, L., Poincaré duality algebras, Macaulay's dual systems, and Steenrod operations, Cambridge Tracts in Math., vol. 167, Cambridge University Press, Cambridge, 2005. MR2177162 4.2, 4.5.Google Scholar
25Papadima, S. and Suciu, A. I.. Algebraic invariants for right-angled Artin groups. Math. Annalen 334(3) (2006) 533555, MR2207874 2.4.CrossRefGoogle Scholar
26Papadima, S. and Suciu, A. I.. Bieri-Neumann-Strebel-Renz invariants and homology jumping loci. Proc. Lond. Math. Soc. 100(3) (2010) 795834, MR2640291 2.3, 2.3, 3.3.CrossRefGoogle Scholar
27Papadima, S. and Suciu, A. I.. Non-abelian resonance: product and coproduct formulas, in Bridging Algebra, Geometry, and Topology, 269–280, Springer Proc. Math. Stat., vol. 96, Springer, Cham, 2014. MR3297121 2.3.Google Scholar
28Papadima, S. and Suciu, A. I.. The topology of compact Lie group actions through the lens of finite models, Int. Math. Res. Notices IMRN (to appear), doi:10.1093/imrn/rnx294.CrossRefGoogle Scholar
29Roos, J.-E.. Three-dimensional manifolds, skew-Gorenstein rings and their cohomology. J. Commut. Algebra 2(4) (2010) 473499, MR2753719 4.2.10.1216/JCA-2010-2-4-473CrossRefGoogle Scholar
30Schouten, J.. Klassifizierung der alternierenden Grössen dritten Grades in sieben Dimensionen. Rend. Circ. Mat. Palermo 55(1) (1931) 137156, Zbl 0001.35401 4.4.Google Scholar
31Sikora, A.. Cut numbers of 3-manifolds. Trans. Am. Math. Soc. 357(5) (2005) 20072020,MR2115088 6.3, 6.3, 6.4.Google Scholar
32Smith, L. and Stong, R. E.. Poincaré duality algebras mod two. Adv. Math. 225(4) (2010) 19291985, MR2680196 4.2.10.1016/j.aim.2010.04.013CrossRefGoogle Scholar
33Suciu, A. I.. Hyperplane arrangements and Milnor fibrations. Ann. Fac. Sci. Toulouse Math. 23(2) (2014) 417481, MR3205599 2.4.10.5802/afst.1412CrossRefGoogle Scholar
34Suciu, A. I.. Cohomology jump loci of 3-manifolds, arxiv:1901.01419v1.Google Scholar
35Suciu, A. I. and Wang, H.. Pure virtual braids, resonance, and formality. Math. Zeit. 286(3–4) (2017) 14951524, MR3671586 2.3, 2.3, 3.3.10.1007/s00209-016-1811-xCrossRefGoogle Scholar
36Sullivan, D.. On the intersection ring of compact three manifolds. Topology 14(3) (1975) 275277, MR0383415 4.3.CrossRefGoogle Scholar
37Turaev, V.. Torsions of 3-dimensional manifolds, Progress in Mathematics, vol. 208. Birkhäuser Verlag, Basel, 2002. MR1958479 8.1, 8.1.CrossRefGoogle Scholar