Published online by Cambridge University Press: 14 November 2011
Existence and uniqueness theorems are established for dual trigonometric equations having right-hand sides that are given functions of bounded variation. The first equation in each pair has coefficients, say {Jn(n + h)} or (jn(n + h – ½)}, and the second equation coefficients {jn)}, where h is a nonnegative constant. A potential problem involving mixed boundary conditions of first and third kind is associated with each dual series. The potential problem is analysed using a stepwise perturbation procedure involving solutions in powers of h. The analysis demonstrates that the present dual series problem can be resolved if the dual series problem associated with the case h = 0 is solvable, the latter being a result obtained earlier.