Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T02:07:14.064Z Has data issue: false hasContentIssue false

Perturbation theory for dual semigroups II. Time-dependent perturbations in the sun-reflexive case

Published online by Cambridge University Press:  14 November 2011

Ph. Clément
Affiliation:
Delft University of Technology, Department of Mathematics and Informatics, Julianalaan 132, Postbus 356, 2600 AJ Delft, The Netherlands
O. Diekmann
Affiliation:
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands Institute of Theoretical Biology, University of Leiden, Groenhovenstraat 5, 2311 BT Leiden, The Netherlands
M. Gyllenberg
Affiliation:
Helsinki University of Technology, Department of Mathematics and Systems Analysis, SF-02150 Espoo, Finland
H. J. A. M. Heijmans
Affiliation:
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
H. R. Thieme
Affiliation:
Sonderforschungsbereich 123, Universitat Heidelberg, Im Neuenheimer Feld 294, D-6900 Heidelberg, Bundesrepublik Deutschland

Synopsis

We consider time-dependent perturbations of generators of strongly continuous semigroups on a Banach space. The perturbations map the Banach space into a bigger space, which is the second dual of the original space in a specific semigroup sense. Using the theory of dual semigroups we show that the solutions of a generalised variation-of-constants formuladefine an evolutionary system. We investigate continuity and differentiability propertiesof this evolutionary system and its dual system and examine in what sense the perturbed generator and its adjoint generate these evolutionary systems. It is shown that the results apply naturally to retarded functional differential equations and age structured population dynamics.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Dual semigroups and second order linear elliptic boundary value problems. Israel J. Math. 45 (1983), 225254.Google Scholar
2Ball, J. M.. Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977), 370373.Google Scholar
3Bellini-Morante, A.. Applied Semigroups and Evolution Equations (Oxford: Clarendon Press, 1979).Google Scholar
4Butzer, P. L. and Berens, H.. Semi-groups of operators and approximation (Berlin: Springer, 1967).Google Scholar
5Clément, Ph., Diekmann, O., Gyllehberg, M., Heijmans, H. J. A. M. and Thieme, H. R.. Perturbation theory for dual semigroups I. The sun-reflexive case. Math. Ann. 277 (1987), 709725.CrossRefGoogle Scholar
6Clemént, Ph., Heijmans, H. J. A. M.et al. One-parameter semigroups. CWI Monographs (Amsterdam: North-Holland, 1987).Google Scholar
7Desch, W. and Schappacher, W.. On relatively bounded perturbations of linear C0-semigroups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 327341.Google Scholar
8Desch, W., Schappacher, W. and Zhang, Kang Pei. Semilinear evolution equations (preprint).Google Scholar
9Desch, W., Lasiecha, I. and Schappacher, W.. Feedback boundary control problems for linear semigroups. Israeli. Math. 51 (1985), 177207.Google Scholar
10Diekmann, O.. Perturbed dual semigroups and delay equations. In Dynamics of infinite dimensional systems (Chow, S-N. and Hale, J. K., eds.) NATO ASI Series, Vol. F37, 6773 (Berlin: Springer, 1987).Google Scholar
11Dieudonné, J.. Foundations of modern analysis (New York: Academic Press, 1969).Google Scholar
12Dorroh, J. R. and Graff, R. A.. Integral equations in Banach spaces, a general approach to the linear Cauchy problem, and applications to the nonlinear problem. J. Integral Equations 1 (1979), 309359.Google Scholar
13Gripenperg, G., Londen, S-O. and Staffans, O.. Volterra equations (in preparation).Google Scholar
14Hale, J. K.. Theory of functional differential equations (New York: Springer, 1977).Google Scholar
15Hille, E. and Phillips, R. S.. Functional analysis and semi-groups (Providence: Amer. Math. Soc, 1957).Google Scholar
16Kato, T.. Integration of the equation of evolution in a Banach space. J. Math. Soc. lapan 5 (1953), 208234.Google Scholar
17Kellermann, H.. Linear evolution equations with time-dependent domain. Semesterbericht Funktionalanalysis, Tubingen, Wintersemester 1985/1986.Google Scholar
18Miller, R. K.. Nonlinear Volterra integral equations (Menlo Park: Benjamin, 1971).Google Scholar
19Pazy, A.. Semigroups of linear operators and applications to partial differential equations (New York: Springer, 1983).Google Scholar
20Rudin, W.. Principles of mathematical analysis, Third Edition (New York: McGraw-Hill, 1976).Google Scholar
21Tanabe, H.. Equations of Evolution (London: Pitman, 1979).Google Scholar