Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:23:02.340Z Has data issue: false hasContentIssue false

On uniform boundedness properties in exhausting additive set function spaces

Published online by Cambridge University Press:  14 November 2011

Aníbal Moltó
Affiliation:
Facultad de Matemáticas, Dr Moliner s/n, Burjasot, Valencia, Spain

Synopsis

Valdivia (1978) introduced the class of suprabarrelled spaces, and (1979) deduced some uniform boundedness properties for scalar valued exhausting additive set functions on a σ-algebra from the suprabarrelledness of certain spaces. In this paper, it is shown that those uniform boundedness properties hold for G-valued exhausting additive set functions, G being a commutative topological group, on a larger class of Boolean algebras. Such properties are proved in Valdivia (1979) by means of duality theory arguments and ‘sliding hump’ methods, whereas here they are derived from the Baire category theorem. This generalization enables us to find a wide class of compact topological spaces K such that the subspaces of C(K) which satisfy a mild property are suprabarrelled.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dieudonné, J.. Sur les propriétés de permanence de certains espaces vectoriels topologiques. Ann Soc. Math. Polon. 25 (1952), 5055.Google Scholar
2Drewnowski, L.. Topological rings of sets, continuous set functions, integration I. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 269276.Google Scholar
3Drewnowski, L.. Topological rings of sets, continuous set functions, integration II. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 277286.Google Scholar
4Drewnowski, L.. Uniform boundedness principle for finitely additive vector measures. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 115118.Google Scholar
5Dunford, N. and Schwartz, J.. Linear operators, Pt I (New York: Wiley–Interscience, 1958).Google Scholar
6Gillman, L. and Jerison, J.. Rings of continuous functions (New York: Van Nostrand Reinhold, 1960).CrossRefGoogle Scholar
7Kelley, J. L.. General Topology (New York: Van Nostrand Reinhold, 1963).Google Scholar
8Moltó, A.. On the Vitali–Hahn–Saks theorem. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 163173.CrossRefGoogle Scholar
9Orlitcz, W.. On L*ϕ based on the notion of a finitely additive integral. Comment. Math. Prace Mat. 12 (1968), 99113.Google Scholar
10Saxon, S.. Some normed barrelled spaces which are not Baire. Math. Ann. 209 (1974), 153160.CrossRefGoogle Scholar
11Saxon, S. and Levin, M.. Every countable-codimensional subspace of a barrelled space is barrelled. Proc. Amer. Math. Soc. 29 (1971), 9196.CrossRefGoogle Scholar
12Seever, G. L.. Measures on F-spaces. Trans. Amer. Math. Soc. 133 (1968), 267280.Google Scholar
13Sikorski, R.. Boolean Algebras (Berlin: Springer, 1969).CrossRefGoogle Scholar
14Todd, A. and Saxon, S.. A property of locally convex Baire spaces. Math. Ann. 206 (1973), 2335.CrossRefGoogle Scholar
15Valdivia, M.. Absolutely convex sets in barrelled spaces. Ann. Inst. Fourier (Grenoble) 21 (1971), 313.CrossRefGoogle Scholar
16Valdivia, M.. On certain barrelled normed spaces. Ann. Inst. Fourier (Grenoble) 29 (1979), 3956.CrossRefGoogle Scholar
17Valdivia, M.. On suprabarrelled spaces. Proc. functional analysis, holomorphy and approximation theory (Rio de Janeiro: 1978), Lecture Notes in Mathematics 843 (Berlin: Springer, 1981) pp. 572580.CrossRefGoogle Scholar