Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T03:21:32.737Z Has data issue: false hasContentIssue false

On the vibrations of rectangular plates

Published online by Cambridge University Press:  14 November 2011

Alain Haraux
Affiliation:
Université Pierre et Marie Curie, Laboratoire d'Analyse Numérique (U. A. 189), Tour 55-65, 5e étage, 4, place Jussieu, 75230 Paris Cedex 05, France
Vilmos Komornik
Affiliation:
Eötvös Loránd University, Department of Analysis, H-1088 Budapest, Múzeum krt. 6-8, Hungary; andUniversité de Bordeaux I, U.F.R. de Mathématiques et déInformatique, 351, cours de la Libération, 33405 Talence Cedex, France

Synopsis

We prove that, for every non-empty open subset of a rectangular plate, there exists a positive number T such that no vibration of this plate with fixed edges can remain strictly above the rest position at all points of the subset during a period T. Moreover, the result remains valid for every non-empty segment parallel to one of the sides of the plate. Our proof is based on some results of non-harmonic analysis.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bogmér, A., Horváth, M. and Joó, I.. Notes to some papers of V. Komornik on vibrating membranes. Period. Math. Hungar. 20 (1989), 193205.CrossRefGoogle Scholar
2Cazenave, T. and Haraux, A.. Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 449452.Google Scholar
3Cazenave, T. and Haraux, A.. On the nature of free oscillations associated with some semilinear wave equations. In Nonlinear Partial Differential Equations and Their Applications, eds Brézis, H. and Lions, J.-L.. Collège de France Seminar, Vol. VII, Research Notes in Mathematics 122, pp. 5979 (New York: Pitman, 1985).Google Scholar
4Cazenave, T. and Haraux, A.. Oscillatory phenomena associated to semi-linear wave equations in one spatial dimension. Trans. Amer. Math. Soc. 300 (1987), 207233.CrossRefGoogle Scholar
5Cazenave, T. and Haraux, A.. Some oscillatory properties of the wave equation in several space dimensions. J. Funct. Anal. 76 (1988), 87109.CrossRefGoogle Scholar
6Haraux, A.. Propriétés d'oscillation des solutions de l'équation des ondes avec conditions de Dirichlet au bord. Séminaire Bony–Sjöstrand–Meyer (19841985) exp. No. IX.Google Scholar
7Haraux, A.. Semi-linear hyperbolic problems in bounded domains. Mathematical reports, Vol. 3, Part 1, ed. Dieudonné, J. (New York: Harwood Academic Publishers and Gordon and Breach, 1987).Google Scholar
8Haraux, A.. Séries lacunaires et côntroie semi-interne des vibrations d'une plaque rectangulaire, J. Math. Pures Appl. 68 (1989), 457465.Google Scholar
9Haraux, A.. Quelques propriétś des series lacunaires utiles dans l'étude des vibrations élastiques.In Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, 1987–88, eds H. Brézis and J.-L. Lions Pitman Research Notes in Mathematics (New York: Pitman, (to appear).Google Scholar
10Haraux, A. and Komornik, V.. Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana 1 (1985), 5777.CrossRefGoogle Scholar
11Horv, M.áth. The vibration of a membrane in different points. Ann. Univ. Sci. Budapest. Eötvös Sect. Math, (to appear).Google Scholar
12Avdonin, S. A., personal communication.Google Scholar
13Ingham, A. E.. Some trigonometrical inequalities with applications in the theory of series. Math.Z. 41 (1936), 367369.CrossRefGoogle Scholar
14Jaffard, S.. Contrôie interne exact des vibrations d'une plaque rectangulaire. Portugal. Math, (to appear).Google Scholar
15Jo, I.ó. On some Riesz cases (to appear).Google Scholar
16Jo, I.ó. A remark on the vibration of a circular membrane in different points (to appear).Google Scholar
17Kahane, J.-P.. Pseudo-póriodicite et sóries de Fourier lacunaires. Ann. Sci. École Norm. Sup. 79 (1962), 93150.CrossRefGoogle Scholar
18Komornik, V.. On the vibrations of a square membrane. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 1320.CrossRefGoogle Scholar
19Komornik, V.. On the vibrations of a spherical membrane. Houston J. Math, (to appear).Google Scholar
20Komornik, V.. On the vibrations of solid balls. Ada Math. Acad. Sci. Hungr. (to appear).Google Scholar
21Komornik, V.. On the exact internal controllability of a Petrowsky system. J. Math Pures Appl. (to appear).Google Scholar
22Meyer, Y.. Trois problémes sur les sommes trigonomeètriques. Astèrisque 1 (1973).Google Scholar