Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T15:00:39.508Z Has data issue: false hasContentIssue false

On the motion of a vortex filament in an external flow according to the localized induction approximation

Published online by Cambridge University Press:  14 November 2011

Takahiro Nishiyama
Affiliation:
Department of Mathematics, Keio University, Yokohama 223-8522, Japan, ([email protected])

Abstract

A vector equation which gives the velocity of a vortex filament embedded in an inviscid incompressible flow is considered. It comprises terms representing effects from the localized self-induction and from the external flow. The initial value problem is proved to have at least a solution for a suitable external flow term.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aref, H. and Flinchem, E. P.. Dynamics of a vortex filament in a shear flow. J. Fluid Mech. 148 (1984), 477497.Google Scholar
2Arms, R. J. and Hama, F. R.. Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8 (1965), 553559.Google Scholar
3Batchelor, G. K.. An introduction to fluid dynamics (Cambridge University Press, 1967).Google Scholar
4Da, L. S.Rios. Sul moto d'un liquido indefinito con un filetto vorticoso di forma qualunque. Rend. Circ. Mat. Palermo 22 (1906), 117135.Google Scholar
5Fukumoto, Y.. Stationary configurations of a vortex filament in background flows. Proc. R. Soc. Lond. A 453 (1997), 12051232.CrossRefGoogle Scholar
6Hasimoto, H.. A soliton on a vortex filament. J. Fluid Mech. 51 (1972), 477485.Google Scholar
7Klein, R., Majda, A. J. and McLaughlin, R. M.. Asymptotic equations for the stretching of vortex filaments in a background flow field. Phys. Fluids A 4 (1992), 22712281.Google Scholar
8Ladyženskaja, O. A., Solonnikov, V. A. and Ural'ceva, N. N.. Linear and quasilinear equations of parabolic type (AMS, Providence, RI, 1968).CrossRefGoogle Scholar
9Levi-Civita, T.. Sull'attrazione esercitata da una linea materiale in punti prossimi alia linea stessa. Rend. R. Ace. Lincei 17 (1908), 315.Google Scholar
10Nishiyama, T. and Tani, A.. Initial and initial-boundary value problems for a vortex filament with or without axial flow. SIAM J. Math. Analysis 27 (1996), 10151023.Google Scholar
11Onuki, A.. Line motion in terms of nonlinear Schrödinger equations. Progr. Theor. Phys. 74 (1985), 979996.Google Scholar
12Ricca, R. L.. Rediscovery of Da Rios equations. Nature 352 (1991), 561562.Google Scholar
13Sulem, P. L., Sulem, C. and Bardos, C.. On the continuous limit for a system of classical spins. Commun. Math. Phys. 107 (1986), 431454.CrossRefGoogle Scholar
14Tani, A. and Nishiyama, T.. Solvability of equations for motion of a vortex filament with or without axial flow. Publ. Res. Inst. Math. Sci. Kyoto Univ. 33 (1997), 509526.Google Scholar