Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T18:36:12.791Z Has data issue: false hasContentIssue false

On the minimization of singular quadratic functional

Published online by Cambridge University Press:  14 November 2011

John S. Bradley
Affiliation:
Mathematics Department, University of Tennessee, Knoxville, Tennessee 37916, U.S.A.
Don B. Hinton
Affiliation:
Mathematics Department, University of Tennessee, Knoxville, Tennessee 37916, U.S.A.
Robert M. Kauffman
Affiliation:
Mathematics Department, University of Tennessee, Knoxville, Tennessee 37916, U.S.A.

Synopsis

A quadratic functional Q is considered which is defined by an integral on a subset of functions in a weighted Hilbert space. The functional Q is minimized subject to the Dirichlet index of the associated differential operator being minimal. The infimum of Q is shown to be the least point in the spectrum of a certain self-adjoint operator which arises as a Friedrichs extension.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amos, R. J. and Everitt, W. N.. On a quadratic integral inequality. Proc. Roy. Soc. Edinburgh Sect. A 78 (1978), 241256.CrossRefGoogle Scholar
2Amos, R. J. and Everitt, W. N.. On integral inequalities associated with ordinary regular differential expressions. Differential equations and applications, ed. Eckhaus, W. and de Jager, E. M. (Amsterdam: North Holland, 1978).Google Scholar
3Barbu, V.. On convex control problems on infinite intervals. J. Math. Anal. Appl 65 (1978), 687702.CrossRefGoogle Scholar
4Bennewitz, C.. Special theory for pairs of differential operators. Ark. Mat. 15 (1977).CrossRefGoogle Scholar
5Bennewitz, C.. A generalization of Niessens limit-circle criterion. Proc. Roy. Soc. Edinburgh Sect. A 78 (1977), 8190.CrossRefGoogle Scholar
6Bradley, J. S. and Everitt, W. N.. A singular integral inequality on a bounded interval. Proc. Amer. Math. Soc. 61 (1976), 2935.CrossRefGoogle Scholar
7Bradley, J. S. and Everitt, W. N.. Inequalities associated with regular and singular problems in the calculus of variations. Trans. Amer. Math. Soc. 182 (1973), 303321.CrossRefGoogle Scholar
8Chang, D. C.. Integral inequalities associated with regular and singular boundary value problems (Univ. of Tennessee Ph.D. dissertation, 1976).Google Scholar
9Dunford, N. and Schwartz, J. T.. Linear operators, II (New York: Interscience, 1963).Google Scholar
10Eastham, M. S. P.. The least limit point of the spectrum associated with singular differential operators. Proc. Cambridge Philos. Soc. 67 (1970), 277281.CrossRefGoogle Scholar
11Everitt, W. N., Spectral theory of the Wirtinger inequality. Lecture Notes in Mathematics 564 (Berlin: Springer, 1976).Google Scholar
12Friedrichs, K.. Criteria for the discrete character of the spectra of ordinary differential equations. Courant Anniversity Volume (New York: Interscience, 1948).Google Scholar
13Friedrichs, K.. Criteria for discrete spectra. Comm. Pure Appl. Math. 3 (1950), 439449.CrossRefGoogle Scholar
14Goldberg, S.. Unbounded Linear Operators (New York: McGraw-Hill, 1966).Google Scholar
15Karlsson, B.. Generalization of a theorem of Everitt. J. London Math. Soc. 9 (1974), 131142.CrossRefGoogle Scholar
16Karlsson, B.. On the limit circle case for pairs of ordinary differential operators in the left positive case. Inst. Mittag-Lefβer Rep. 7 (1975).Google Scholar
17Hinton, D. B.. Continuous spectra of an even order differential operator. Illinois J. Math. 18 (1974), 444450.CrossRefGoogle Scholar
18Hinton, D. B.. Limit point criteria for differential equations, II. Canad. J. Math. 26 (1974), 340351.CrossRefGoogle Scholar
19Hinton, D. B.. Strong limit-point and Dirichlet criteria for ordinary differential expressions of order 2n. Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 301310.CrossRefGoogle Scholar
20Hinton, D. B.. On the eigenfunction expansions of singular ordinary differential expressions. J. Differential Equations 24 (1977), 282308.CrossRefGoogle Scholar
21Hinton, D. B.. Eigenfunction expansions and spectral matrices of singular differential operators. Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), 289308.CrossRefGoogle Scholar
22Hinton, D. B. and Lewis, R. T.. Discrete spectra criteria for singular differential operators with middle terms. Proc. Cambridge Philos. Soc. 77 (1975), 337347.CrossRefGoogle Scholar
23Hinton, D. B. and Lewis, R. T.. Singular differential operators with spectra discrete and bounded below. Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 117134.CrossRefGoogle Scholar
24Kauffman, R. M.. On the limit-n classification of ordinary differential operators with positive coefficients. Proc. London Math. Soc. 35 (1977), 496526.CrossRefGoogle Scholar
25Kauffman, R. M.. The number of Dirichlet solutions to a class of linear ordinary differential equations. J. Differential Equations 31 (1979), 117129.CrossRefGoogle Scholar
26Müller-Pfeiffer, E.. Spekraleigenschaften singulärer gewöhnlicher Differentialoperatoren (Leipzig: Teubner-Texte zur Mathematik, 1977).Google Scholar
27Niessen, H. D.. A necessary and sufficient limit-circle criterion for left-definite eigenvalue problems. Conf. Theor. Ordinary and Partial Differential Equations, Univ. Dundee, 1974. Lecture Notes in Mathematics 280 (Berlin: Springer, 1974).Google Scholar
28Naimark, M. A.. Linear Differential Operators, II (New York: Ungar, 1968).Google Scholar
29Pleijel, A.. Spectral theory for pairs of formally selfadjoint ordinary differential operators. J. Indian. Math. Soc. 34 (1970), 259268.Google Scholar
30Putnam, C. R.. An application of spectral theory to a singular calculus of variations problem. Amer. J. Math. 70 (1948), 780803.CrossRefGoogle Scholar
31Robinette, J.. On the Dirichlet index of singular differential operators, in preparation.Google Scholar
32Sears, D. S. and Wray, S. D.. An inequality of C. R. Putnam involving a Dirichlet functional. Proc. Roy. Soc. Edinburgh Sect. A 75 (1976), 199207.CrossRefGoogle Scholar