Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T21:13:21.219Z Has data issue: false hasContentIssue false

On the k-invariants of iterated loop spaces

Published online by Cambridge University Press:  14 November 2011

Dominique Arlettaz
Affiliation:
Institut de mathématiques, Université de Lausanne, CH-1015 Lausanne, Switzerland

Synopsis

The purpose of this paper is to give universal bounds for the order of the Postnikov k-invariants of infinite loop spaces. This is done by giving universal bounds for the order of the k-invariants of m-connected r-fold loop spaces in dimensions ≦ r + 2m. An application of the result provides information on the Hurewicz homomorphism between the algebraic K-theory of aring and the homology of its general linear group.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Arkowitz, M. and Curjel, C. R.. The Hurewicz homomorphism and finite homotopy invariants. Trans. Amer. Math. Soc. 110 (1964), 538551.CrossRefGoogle Scholar
2Arlettaz, D.. On the homology of the special linear group over a number field. Comment. Math. Helv. 61 (1986), 556564.CrossRefGoogle Scholar
3Arlettaz, D.. The first k-invariant of a double loop space is trivial (preprint).Google Scholar
4Cartan, H.. Algèbres d'Eilenberg-MacLane et homotopie (Séminaire H. Cartan Ecole Norm. Sup. 1954/1955).Google Scholar
5Loday, J.-L.. K-théorie algébrique et représentations de groupes. Ann. Sci. Ecole Norm. Sup. (4) 9 (1976), 309377.CrossRefGoogle Scholar
6Meyer, J.-P.. Whitehead products and Postnikov systems. Amer. J. Math. 82 (1960), 271280.CrossRefGoogle Scholar
7Thorn, R.. L'homologie des espaces fonctionnels. Colloque de Topologie Algébrique, Louvain (1956), 2939.Google Scholar
8Wagoner, J. B.. Delooping classifying spaces in algebraic K-theory. Topology 11 (1972), 349370.CrossRefGoogle Scholar
9Whitehead, G. W.. Elements of Homotopy Theory. Graduate Texts in Math 61 (New York: Springer, 1978).CrossRefGoogle Scholar