Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T01:42:07.960Z Has data issue: false hasContentIssue false

On the growth of the relative volume of a tube with its radius*

Published online by Cambridge University Press:  14 November 2011

Fernando Giménez
Affiliation:
Departamento de Geometría y Topología, Universidad de Valencia, Burjassot, Valencia, Spain; and Departamento de Matemática Aplicada, E.T.S.I. Industrials, Universidad Politécnica de Valencia, Valencia, Spain

Synopsis

In this paper we obtain some theorems of Bishop–Gromov type for tubes about a submanifold and semitubes about a real hypersurface of a Riemannian or Kaehler manifold with curvature bounded either from below or from above.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bishop, R. L. and Crittenden, R. J.. Geometry of Manifolds (New York: Academic Press, 1964).Google Scholar
2Carreras, F., Giménez, F. and Miquel, V.. A comparison theorem for the first Dirichlet eigenvalue of a domain in a Kaehler submanifold (To appear in J. Australian Math. Soc. A).Google Scholar
3Giménez, F.. Comparisons theorems for the volume of a complex submanifold of a Kaehler manifold. Israel J. of Math. 71 (1990), 239255.CrossRefGoogle Scholar
4Giménez, F.. Volume estimate for a cone with a submanifold as vertex. J. Geometry.Google Scholar
5Gray, A.. Tubes (London: Addison Wesley, 1990).Google Scholar
6Gray, A.. Comparison theorems for the volumes of tubes as generalizations fo the Weil tube formula. Topology 21 (1982), 201228.CrossRefGoogle Scholar
7Gromov, M.. Structures métriques pour les variétés Riemanniannes, Rédigé par J. Lafontaine et P. Pansu (CEDIC/Fernand Nathan, 1981).Google Scholar
8Giménez, F. and Miquel, V.. Volume estimates for real hypersurfaces of a Kaehler manifold with strictly positive holomorphic sectional and antiholomorphic Ricci curvatures. Pacific J. Math. 142 (1990), 2339.CrossRefGoogle Scholar
9Nayatani, S.. On the volume of positively curved Kaehler Manifolds. Osaka J. Math. 25 (1988), 223231.Google Scholar