Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T00:16:03.696Z Has data issue: false hasContentIssue false

On the fixed point index in locally convex spaces

Published online by Cambridge University Press:  14 November 2011

M. Furi
Affiliation:
Istituto di Matematica Applicata “G. Sansone”, Via S. Marta 3, 50139 Firenze, Italy
M. P. Pera
Affiliation:
Istituto di Matematica Applicata “G. Sansone”, Via S. Marta 3, 50139 Firenze, Italy

Synopsis

Let E be a Hausdorff locally convex space, Q a convex closed subset of E and U an open subset of Q. We develop an index theory for a class of locally compact maps f: UE for which the usual assumption f(U) ⊂ Q is replaced by an appropriate “pushing condition”. Moreover, from this index theory, we deduce a general continuation principle and some global results for nonlinear eigenvalue problems.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alexander, J. C.. A primer on connectivity. Proceedings of the Conference on Fixed Point Theory, eds Fadell, E. and Founder, G.. Lecture Notes in Mathematics, 886, pp. 455483 (Berlin: Springer, 1981).Google Scholar
2Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620709.Google Scholar
3Cecchi, M., Furi, M. and Marini, M.. On continuity and compactness of some nonlinear operators associated with differential equations in noncompact intervals. Nonlinear Anal. 9 (1985), 171180.Google Scholar
4Cecchi, M., Furi, M. and Marini, M.. About the solvability of ordinary differential equations with asymptotic boundary conditions. Boll. Un. Mat. Ital., C(6) (1985), 329345.Google Scholar
5Dancer, E. N.. Global solutions branches for positive maps. Arch. Rational Mech. Anal. 52 (1973), 181192.CrossRefGoogle Scholar
6Edelson, A. L. and Pera, M. P.. Connected branches of asymptotically equivalent solutions to nonlinear eigenvalue problems, (to appear).Google Scholar
7Furi, M. and Pera, M. P.. Co-bifurcating branches of solutions for nonlinear eigenvalue problems in Banach spaces. Ann. Mat. Pura Appl. 135 (1983), 119132.CrossRefGoogle Scholar
8Furi, M. and Pera, M. P.. A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals. Ann. Polon. Math, (to appear).Google Scholar
9Granas, A.. The Leray-Schauder index and the fixed point theory for arbitrary ANR's. Bull. Soc. Math. France 100 (1972), 209228.Google Scholar
10Leray, J. and Schauder, J.. Topologie et equations fonctionnelles. Ann. Sci. Ecole Norm. Sup. 51, (1934), 4578.CrossRefGoogle Scholar
11Leray, J.. Sur les équations et les transformations. J. Math. Pures Appl. 24 (1945), 201248.Google Scholar
12Nagumo, M.. Degree of mapping in convex linear topological spaces. Amer. J. Math. 73 (1951), 485496.Google Scholar
13Rabinowitz, P. H.. Some global results for nonlinear eigenvalue problems. J. Fund. Anal. 7 (1971), 487513.Google Scholar
14Whyburn, G. T.. Topological Analysis (Princeton: Princeton Univ. Press, 1958).Google Scholar