Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T01:42:20.541Z Has data issue: false hasContentIssue false

On the existence of eigenvalues for some nonlinear elliptic and hyperbolic problems*

Published online by Cambridge University Press:  14 November 2011

Nicola Basile
Affiliation:
Dipartimento di Matematica, Universita degli Studi di Bari, Via G. Fortunato, Bari 70125, Italy
Michele Mininni
Affiliation:
Dipartimento di Matematica, Universita degli Studi di Bari, Via G. Fortunato, Bari 70125, Italy

Synopsis

In this paper some eigenvalue problems for elliptic as well as hyperbolic equations are solved. The main tool used is an abstract critical point theorem on an unbounded manifold of the form {u | (Lu, u) = constant} (where L is a nonpositive selfadjoint operator), which makes use of a linking type argument on a manifold.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ambrosetti, A. and Rabinowitz, P. H.. Dual variational methods in critical point theory and applications. J. Fund. Anal. 14 (1973), 349381.CrossRefGoogle Scholar
2Basile, N. and Mininni, M.. Multiple periodic solutions for a semilinear wave equation with nonmonotone nonlinearity. J. Nonlinear Anal T.M.A. 9 (1985), 837848.CrossRefGoogle Scholar
3Benci, V., Capozzi, A. and Fortunate, D. Periodic solutions of Hamiltonian systems of prescribed period. Univ. Wisconsin Math. Res. Center Tech. Summary Report n. 2508 (1983).CrossRefGoogle Scholar
4Benci, V. and Fortunate, D.Dual methods in critical point theory. Multiplicity results for indefinite functionals. Ann. Mat. Pura Appl. 32 (1982), 215242.CrossRefGoogle Scholar
5Benci, V. and Rabinowitz, P. H.. Critical point theory for indefinite functionals. Invent. Math. 52 (1979), 241273.CrossRefGoogle Scholar
6Brézis, H. and Nirenberg, L.. Characterization of the ranges of some nonlinear operators and applications to BVPs. Ann. Scuola Norm. Sup. Pisa 5 (1978), 225326.Google Scholar
7Brézis, H. and Nirenberg, L.. Forced vibrations for a nonlinear wave equation. Comm. Pure Appl. Math. 31 (1978), 130.CrossRefGoogle Scholar
8Gerami, G.. Un criterio di esistenza per punti critici su varietà illimitate. Istit. Lombardo Accad. Sci. Lett. Rend. A 112 (1978), 332336.Google Scholar
9Cerami, G.. Su11'esistenza di autovalori per un problema al contorno nonlineare. Ann. Mat. Pura Appl. 124 (1980), 161179.CrossRefGoogle Scholar
10Coron, J. M.. Periodic solutions of a nonlinear wave equation without assumptions of monotonicity (preprint).Google Scholar
11Fortunato, D., Mininni, M. and Wu, S.. On the existence of infinitely many eigenfunctions for a nonlinear elliptic problem with indefinite linear part (to appear).Google Scholar
12Ni, W. N.. Some mini-max principles and their applications in nonlinear elliptic equations. J. Analyse Math. 37 (1980), 248275.CrossRefGoogle Scholar
13Palais, R. S.. Lusternik–Schnirel'mann theory on Banach manifolds. Topology 5 (1966), 115132.CrossRefGoogle Scholar
14Rabinowitz, P. H.. Variational methods and nonlinear eigenvalue problems C.I.M.E., 141195 (Rome: Edizioni Cremonese, 1974).Google Scholar
15Rabinowitz, P. H.. Some aspects of critical point theory. Univ. Wisconsin Math. Res. Center Tech. Summary Report n. 2465 (1982).Google Scholar
16Zeidler, E.. Lusternik-Schnirel'mann theory on general level sets. Univ. Wisconsin Math. Res. Center Tech. Summary Report n. 1910 (1979).Google Scholar