Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T08:29:27.622Z Has data issue: false hasContentIssue false

On the asymptotics of a Wiener integral

Published online by Cambridge University Press:  14 November 2011

M. van den Berg
Affiliation:
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.
J. T. Lewis
Affiliation:
Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Republic of Ireland

Synopsis

Let mt(ω) be the range of a standard brownian bridge on R with ω(0) = ω(t) = 0 and let µt(ω) be the corresponding Wiener measure. We determine the asymptotic behaviour for large t of ∫ e−G(mt(ω)) µt(dω) for an increasing convex function G.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kac, M. and Luttinger, J. M.. Bose-Einstein condensation in the presence of impurities II. J. Math. Phys. 15 (1974), 183186.CrossRefGoogle Scholar
2Varadhan, S. R. S.. Large deviations and applications, CBMS-NSF, Regional Conference Series in Applied Mathematics 46 (Philadelphia: SIAM, 1984).CrossRefGoogle Scholar
3M. Kac. Integration in function spaces and some of its applications, Lezione Fermiane, Accademia Nazionale dei Lincei Scuola Normale Superiore, Pisa, 1980.Google Scholar
4Kennedy, D. P.. The distribution of the maximum brownian excursion. J. Appl. Probab. 13 (1976), 371376.CrossRefGoogle Scholar
5Chung, K. L.. Excursions in brownian motion. Ark. Mat. 14 (1976), 155177.CrossRefGoogle Scholar
6Kuiper, N. H.. On the random cumulative frequency distribution. Nederl. Akad. Wetensch. Indag. Math. 22 (1960), 3237.CrossRefGoogle Scholar
7Kuiper, N. H.. Tests concerning random points on a circle. Nederl. Akad. Wetensch. Indag. Math. 22 (1960), 3847.CrossRefGoogle Scholar
8Biane, P. and Yor, M.. Cauchy's principal value and linear brownian motion (preprint, 1986).Google Scholar