Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T05:59:42.314Z Has data issue: false hasContentIssue false

On some nonlinear Neumann problem with weight and critical Sobolev trace maps

Published online by Cambridge University Press:  27 June 2008

H. Yazidi
Affiliation:
UFR des Sciences et Technologie, CNRS UMR 8050, Université Paris 12 Val-de-Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France ([email protected])

Abstract

We consider the problem $-\text{div}(p(x)\nabla u)=\lambda{u}+\alpha|u|^{r-1}u$ in $\varOmega$, $\partial u/\partial\nu=Q(x)|u|^{q-2}u$ on $\partial\varOmega$, where $\varOmega$ is a bounded smooth domain in $\mathbb{R}^{N}$, $N\geq3$, $q=2(N-1)/(N-2)$ and $2<r<q$. Under some conditions on $\partial\varOmega$, $p$, $Q$, $\lambda$, $\alpha$ and the mean curvature at some point $x_0$, we prove the existence of solutions of the above problem. We use variational arguments, namely the concentration–compactness principle, min–max principle and the mountain-pass theorem.

Type
Research Article
Copyright
2007 Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)