Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T09:53:27.425Z Has data issue: false hasContentIssue false

On small cancellation theory over H.N.N. extensions

Published online by Cambridge University Press:  14 November 2011

J. Perraud
Affiliation:
Institut de Mathématiques et d'Informatique, Université de Nantes, France

Synopsis

Small cancellation theory has been extended to symmetrized subsets of free products, amalgamated free products and Higman-Neumann-Neumann (H.N.N.) extensions. We though that it was possible to obtain results on decision problems if we could define small cancellation conditions for finite subsets.

Sacerdote and Schupp (1974) defined the small cancellation condition C'(l/6) for symmetrized subsets of an H.N.N. extension. We define this condition for finite subsets, with the following properties:

For each finite subset X, there is a symmetrized subset X1 with the same normal closure and, if X1 satisfies C'(l/6), then X satisfies C'(l/6).

For some H.N.N. extensions, we can decide whether any finite subset satisfies C'(l/6), and, in this case, we can solve the word problem for the corresponding quotient.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

1Britton, J. L.. The word problem. Ann. of Math. 77 (1963), 1632.CrossRefGoogle Scholar
2Collins, D. J.. Recursively enumerable degrees, and the conjugacy problem. Ada Math. 122 (1969), 115160.Google Scholar
3Higman, G., Neumann, B. H. and Neumann, H.. Embedding theorems for groups. J. London Math. Soc. 24 (1949), 247254.CrossRefGoogle Scholar
4Lyndon, R. C. and Schupp, P. E.. Combinatorial group theory (Berlin: Springer, 1977).Google Scholar
5Perraud, J.. Sur les problèmes des mots des quotients de groupes et produits libres. Bull. Soc. Math. France 108 (1980), 287331.Google Scholar
6Perraud, J.. Sur la condition de petites simplifications C′(l/6) dans un produit libre amalgamé. C.R. Acad. Sci. Paris Sér. A 291 (1980), 247250.Google Scholar
7Sacerdote, G. S. and Schupp, P. E.. S.Q.-universality of H.N.N. and 1-relator groups. J. London Math. Soc. 7 (1974), 733740.CrossRefGoogle Scholar