Article contents
On singular differential operators with positive coefficients
Published online by Cambridge University Press: 14 November 2011
Synopsis
A class of singular real formally self-adjoint differential expressions M on I = [a, = ∞) (a ∈ ℝ), i.e. expressions of the form My = with pj ≧ 0 (j = 0, …, n – 1), pn > 0 is constructed with the following property: For every integer k with 0 ≦ k < n/2 there exists an expression M in this class such that the deficiency index of T0(M) – the minimal operator associated with M – is n + 2k. This generalises a result in [3] and proves part of the McLeod's conjecture.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 120 , Issue 3-4 , 1992 , pp. 361 - 365
- Copyright
- Copyright © Royal Society of Edinburgh 1992
References
1Glazmann, I.. On the deficiency index of differential operators. Dokl. Akad. Nauk SSSR 64 No. 2 (1949).Google Scholar
2Kauffman, R. M.. On the limit-n classification of ordinary differential operators with positive coefficients. Proc. London Math. Soc. (3) 35 (1977), 496–526.CrossRefGoogle Scholar
3Paris, R. B. and Wood, A. D.. On the L 2 nature of solutions of nth order symmetric differential equations and McLeod's conjecture. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 209–236.CrossRefGoogle Scholar
4Schultze, B.. Spectral properties of not necessarily self-adjoint linear differential operators. Adv. in Math. 83 No. 1 (1990), 75–95.CrossRefGoogle Scholar
5Weyl, H.. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwocklungen willkürlicher Funktionen. Math. Ann. 68 (1910), 220–269.CrossRefGoogle Scholar
- 3
- Cited by