Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T18:57:52.022Z Has data issue: false hasContentIssue false

On regularity properties of a surface growth model

Published online by Cambridge University Press:  09 March 2021

Jan Burczak
Affiliation:
Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland and Mathematisches Institut, Universität Leipzig, Augustusplatz 10, D-04109Leipzig, Germany ([email protected])
Wojciech S. Ożański
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, CA90089, USA ([email protected])
Gregory Seregin
Affiliation:
Oxford University, UK and St Petersburg Department of Steklov Mathematical Institute, RAS, Russia ([email protected])

Abstract

We show local higher integrability of derivative of a suitable weak solution to the surface growth model, provided a scale-invariant quantity is locally bounded. If additionally our scale-invariant quantity is small, we prove local smoothness of solutions.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blömker, D., Flandoli, F. and Romito, M.. Markovianity and ergodicity for a surface growth PDE. Ann. Probab. 37 (2009), 275313.CrossRefGoogle Scholar
Blömker, D. and Gugg, C.. Thin-film-growth-models: on local solutions, in Recent developments in stochastic analysis and related topics Sergio Albeverio, Zhi-Ming Ma and Michael Roeckner (eds), pp. 6677 (Hackensack, NJ: World Sci. Publ., 2004).CrossRefGoogle Scholar
Blömker, D., Gugg, C. and Raible, M.. Thin-film-growth models: roughness and correlation functions. European J. Appl. Math., 13 (2002), 385402.CrossRefGoogle Scholar
Blömker, D. and Hairer, M.. Stationary solutions for a model of amorphous thin-film growth’. Stochastic Anal. Appl. 22 (2004), 903922.CrossRefGoogle Scholar
Blömker, D. and Romito, M.. Regularity and blow up in a surface growth model. Dyn. Partial Differ. Equ. 6 (2009), 227252.10.4310/DPDE.2009.v6.n3.a2CrossRefGoogle Scholar
Blömker, D. and Romito, M.. Local existence and uniqueness in the largest critical space for a surface growth model. Nonlinear Differ. Equ. Appl. 19 (2012), 365381.CrossRefGoogle Scholar
Blömker, D. and Romito, M.. Stochastic PDEs and lack of regularity: a surface growth equation with noise: existence, uniqueness, and blow-up’. Jahresber. Dtsch. Math.-Ver. 117 (2015), 233286.10.1365/s13291-015-0123-0CrossRefGoogle Scholar
Campanato, S.. Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 175188.Google Scholar
Gabushin, V. N.. Inequalities for norms of a function and its derivatives in lp metrics. Mat. Zam. 1 (1967), 291298.Google Scholar
Giaquinta, M. and Struwe, M.. On the partial regularity of weak solutions of nonlinear parabolic systems. Math. Z. 179 (1982), 437451.CrossRefGoogle Scholar
Hoppe, R. H. W. and Nash, E. M.. A combined spectral element/finite element approach to the numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films. J. Numer. Math. 10 (2002), 127136.CrossRefGoogle Scholar
Kwong, M. K. and Zettl, A.. Norm Inequalities for Derivatives and Differences (Berlin Heidelberg: Springer, 1993).Google Scholar
Ladyzhenskaya, O. A. and Seregin, G. A.. On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1 (1999), 356387.10.1007/s000210050015CrossRefGoogle Scholar
Lin, F.. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math. 51 (1998), 241257.10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A3.0.CO;2-A>CrossRefGoogle Scholar
Ożański, W. S.. A sufficient integral condition for local regularity of solutions to the surface growth model. J. Funct. Anal. 276 (2019), 29903013.CrossRefGoogle Scholar
Ożański, W. S. and Robinson, J. C.. Partial regularity for a surface growth model. SIAM J. Math. Anal. 51 (2019), 228255.CrossRefGoogle Scholar
Pokorny, M.. Navier–Stokes Equations’, available online at https://www.karlin.mff.cuni.cz/pokorny/NavierandStokes˙eng.pdf, 2020.Google Scholar
Raible, M., Linz, S. J. and Hänggi, P.. Amorphous thin film growth: Minimal deposition equation. Phys. Rev. E 62 (2000), 16911694.CrossRefGoogle ScholarPubMed
Raible, M., Mayr, S. G., Linz, S. J., Moske, M., Hänggi, P. and Samwer, K.. Amorphous thin film: Theory compared with experiment. Europhys. Lett. 50 (2000), 6167.CrossRefGoogle Scholar
Robinson, J. C., Rodrigo, J. L. and Sadowski, W.. The three-dimensional Navier-Stokes equations, Vol. 157 of Cambridge Studies in Advanced Mathematics (Cambridge: Cambridge University Press, 2016).CrossRefGoogle Scholar
Seregin, G.. Lecture Notes on Regularity Theory for the Navier-Stokes Equations, WSPC, 2014.10.1142/9314CrossRefGoogle Scholar
Seregin, G. A., Silvestre, L., Šverák, V. and Zlatoš, A.. On divergence-free drifts. J. Differential Equations 252 (2012), 505540.CrossRefGoogle Scholar
Siegert, M. and Plischke, M.. Solid-on-solid models of molecular-beam epitaxy. Physical Review E 50 (1994), 917931.CrossRefGoogle ScholarPubMed
Stein, O. and Winkler, M.. Amorphous molecular beam epitaxy: global solutions and absorbing sets. European J. Appl. Math. 16 (2005), 767798.CrossRefGoogle Scholar
Temam, R.. Navier-Stokes equations, theory and numerical analysis (Providence, RI: AMS Chelsea Publishing, 2001). Reprint of the 1984 edition.Google Scholar