Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:46:36.021Z Has data issue: false hasContentIssue false

On optimal mild solutions of non-homogeneous differential equations in Banach spaces

Published online by Cambridge University Press:  14 November 2011

S. Zaidman
Affiliation:
Départment de Mathématiques et de Statistique, Université de Montréal, Canada

Synopsis

Consider mild solutions on the real line of non-homogeneous differential equations in a Banach space: u′(t) = Au(t) + f(t), where A is the infinitesimal generator of a C0-semigroup.

We prove an existence result for optimal solutions (as defined in the text) in reflexive spaces and an uniqueness fact in uniformly convex B-spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amerio, L.. Sulle equazioni differenziali quasi-periodiche astratte. Ricerche Mat. 9 (1960), 255274.Google Scholar
2Amerio, L.. Solutions presque-périodiques d'équations fonctionnelks dans les espaces de Hilbert, 11–35 (Louvain: Centre Beige Recherches Math., 1964).Google Scholar
3Hille, E. and Phillips, R. S.. Functional Analysis and Semigroups, A.M.S. Colloq. Publ. 31 (Providence, R. I.: Amer. Math. Soc. 1957).Google Scholar
4Rao, A. S.. A variational property for a family of weakly continuous vector-valued functions. Boll. Un. Mat. Ital. 10 (1974), 15.Google Scholar
5Yosida, K.. Functional Analysis (Berlin: Springer, 1965).Google Scholar
6Zaidman, S.. Solutions presque-périodiques dans le probléme de Cauchy pour l'équation nonhomogène des ondes (I). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 30 (1961), 677681.Google Scholar
7Zaidman, S.. Solutions presque-périodiques des équations différentielles abstraites. Enseignement Math. 24 (1978), 87110.Google Scholar
8Zaidman, S.. Variational results for some classes of vector-valued functions. 1st. Lombardo Accad. Sci. Lett. Rend. A 103 (1969), 408411.Google Scholar
9Zikov, V. V.. Almost-periodic solutions of differential equations in Banach spaces (Russian). Theory of functions and applications, Kharkov, 1967.Google Scholar
10Zikov, V. V. and Levitan, B.. The theory of Favard. Uspehi Mat. Nauk. 32 (1977), 123171.Google Scholar
11Zikov, V. V.. Some new results in the abstract Favard theory. Math. Notes 17 (1975), 2024.CrossRefGoogle Scholar