Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T09:24:24.852Z Has data issue: false hasContentIssue false

On a result of Petersson concerning the modular group

Published online by Cambridge University Press:  14 November 2011

W. W. Stothers
Affiliation:
Department of Mathematics, University of Glasgow

Synopsis

Let N(u, g, h) denote the number of subgroups of index u, genus g and parabolic class number h in the classical modular group. In 1974, Petersson proved that, for g = 0 and h = 1, 2, N(u, g, h) grows exponentially with u. We obtain a formula valid for all g and h. From this we derive an asymptotic estimate, showing that Petersson's result gives the correct type of growth. The proofs use coset diagrams.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Dey, I. M. S.. Schreier systems in free products. Proc. Glasgow Math. Assoc. 7 (1967), 6179.CrossRefGoogle Scholar
2Petersson, H.. Konstruktionsprinzipen für Untergruppen der Modulgruppe mit einer oder zwei Spitzenklassen. J. Reine Angew. Math 268/9 (1974), 94109.Google Scholar
3Stothers, W. W.. The number of subgroups of given index in the modular group. Proc. Roy. Soc. Edinburgh Sect. A 78 (1977), 105112.CrossRefGoogle Scholar
4Stothers, W. W.. Subgroups of infinite index in the modular group. Glasgow Math. J. 19 (1978), 3343.CrossRefGoogle Scholar
5Stothers, W. W.. Free subgroups of the free product of cyclic groups. Math. Comput. 32 (1978), 12741280.CrossRefGoogle Scholar
6Titchmarsh, E. C.. The Theory of Functions, 2nd edn (Oxford Univ. Press, 1939).Google Scholar