Published online by Cambridge University Press: 12 July 2007
Let Ω be a bounded domain in Rn, n ≥ 3 and 0 ∈ Ω. It is known that the heat problem ∂u/∂t + Lλ*u = 0 in Ω × (0, ∞), u(x, 0) = u0 ≥ 0, u0 ≢ 0, where Lλ* := −Δ − λ*/|x|2, λ* := ¼(n − 2)2, does not admit any solutions for any t > 0. In this paper we consider the perturbation operator Lλ*q := −Δ − λ*q(x)/|x|2 for some suitable bounded positive weight function q and determine the border line between the existence and non-existence of positive solutions for the above heat problem with the operator Lλ*q. In dimension n = 2, we have similar phenomena for the critical Hardy–Sobolev operator L* := −Δ − (1/4|x|2)(log R/|x|)−2 for sufficiently large R.