Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:18:38.075Z Has data issue: false hasContentIssue false

On a counterexample of a rank 1 convex function which is not polyconvex in the case N = 2

Published online by Cambridge University Press:  14 November 2011

G. Aubert
Affiliation:
IUT de Nice, 41 Bd Napoleon 3, 06041 Nice Cedex, France

Synopsis

J. M. Ball has introduced the notion of polyconvexity to study nonlinear problems in elasticity and he has shown that polyconvexity implies rank 1 convexity. In this paper we prove by a counterexample that the converse of this implication is false in two dimensions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ball, J. M.. Existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337403.CrossRefGoogle Scholar
2Aubert, G.. Quelques théorèmes de caractérisation de la polyconvexité et de la 1-rang convexité en dimensions 2 et 3. Thèse de Doctorat d'Etat, Université Paris 6, 1986.Google Scholar
3Terpstra, F. J.. Die darstellung biquadratischen formen als summen von quadraten mit anwendung auf die variations rechnung. Math. Ann. 116 (1938), 166180.CrossRefGoogle Scholar
4Serre, D.. Formes quadratiques et calcul des variations. J. Math. Pures Appl. 62 (1983), 177196.Google Scholar
5Knowles, J. K. and Sternberg, E.. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Rational Mech. Anal. 63 (1977), 321336.CrossRefGoogle Scholar
6Aubert, G. and Tahraoui, R.. Sur la faible fermeture de certains ensembles de contrainte en élasticité non linéaire plane. C.R. Acad. Sci. Paris Sér. A 290 (1980), 573–540.Google Scholar