No CrossRef data available.
Article contents
Norms in product spaces which preserve approximation properties
Published online by Cambridge University Press: 14 November 2011
Synopsis
Let E1 and E2 be real normed linear spaces such that the dimension of any of them is at least 2. We prove that the norms in E1 × E2 which verify a simple property of monotonicity with regard to the initial norms in E1 and E2 are the only norms in E1 × E2 which preserve best linear approximations, in the sense that ifyk ∊ Lk is best approximation to xk from the linear subspace Lk, (k = 1,2), then (y1, y2) is best approximation to (x1, x2) from L1 × L2.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 105 , Issue 1 , 1987 , pp. 199 - 203
- Copyright
- Copyright © Royal Society of Edinburgh 1987
References
1Benitez, C.. Normas en espacios producto que conservan propiedades de aproximación. Rev. Mat. Hisp.-Amer. 4 34 (1974), 163–175.Google Scholar
2Birkhoff, G.. Orthogonality in linear metric spaces. Duke Math. J. 1 (1935), 169–172.CrossRefGoogle Scholar
4Hammer, P. C. and Soboczyk, A.. Planar line families I. Proc. Amer. Math. Soc. 4 (1953), 226–233.CrossRefGoogle Scholar
5James, R. C.. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 6 (1947), 265–292.CrossRefGoogle Scholar
6Singer, I.. Best approximation in normed linear spaces by elements of linear subspaces (Berlin: Springer-Verlag, 1970).CrossRefGoogle Scholar