Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:29:53.450Z Has data issue: false hasContentIssue false

Normal/superconducting transitions in Landau–Ginzburg theory

Published online by Cambridge University Press:  14 November 2011

S. J. Chapman
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, U.K.
S. D. Howison
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, U.K.
J. B. McLeod
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, U.K.
J. R. Ockendon
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, U.K.

Synopsis

The Landau–Ginzburg equations governing a normal/superconducting transition layer are considered. Existence, uniqueness and monotonicity of a solution are proved.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Faber, T. E.. The phase transition in superconductors III. Phase propagation below the critical field. Proc. Roy. Soc. London Ser. A 223 (1954), 174194.Google Scholar
2Ginzburg, V. L. and Landau, L. D.. On the theory of superconductivity, J.E.T.P. 20 (1950) 1064.Google Scholar
3Gor'kov, L. P. and M, G.. Éliashberg. Generalisation of the Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Soviet Physics J.E.T.P. 27(1968)328334.Google Scholar
4Keller, J. B.. Propagation of a magnetic field into a superconductor. Phys. Rev. 111 (1958), 14971499.Google Scholar
5Odeh, F.. Existence and bifurcation theorems for the Ginzburg–Landau equations. J. Math. Phys. 8 (1967), 23512356.Google Scholar