Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T02:38:12.849Z Has data issue: false hasContentIssue false

A non-linear Goursat problem for a high order polyvibrating equation

Published online by Cambridge University Press:  14 November 2011

Andrzej Borzymowski
Affiliation:
Institute of Mathematics, Warsaw University of Technology, PI. Jedności Robotniczej 1, Warsaw, Poland

Synopsis

This paper proves the existence of a solution of a non-linear Goursat problem for a partial differential equation of order 2p (p ≧ 2) with the boundary conditions given on 2p curves emanating from a common point. The problem is reduced to a system of integro-differential-functional equations and then Schauder's fixed point theorem is applied.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bielecki, A. and Kisyński, J.. Sur le problème de E. Goursat relatif a l'équation ə 2z/əx əy = f(x, y). Ann. Univ. Mariae Curie-Skłodowska 10A (1956), 99126.Google Scholar
2Borzymowski, A.. A non-linear Goursat problem for a 4th order polyvibrating equation. Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 153164.CrossRefGoogle Scholar
3Borzymowski, A.. Concerning a Goursat problem for some partial differential equation of order 2p. Demonstratio Math. 18 (1985), 253277.Google Scholar
4Mangeron, D.. Problèmes à la frontière concernant les équations polyvibrantes. C.R. Acad. Sci. Paris Sér. A 266 (1968), 870–73; 976–79; 1103–06; 1121–24.Google Scholar
5Oğuztöreli, M. N.. Sur le problème de Goursat pour une équation de Mangeron d'ordre supéneur I, II. Bull. Acad. Roy. Belg. Cl. Sci. 58 (1972), 464–71; 577–82.Google Scholar
6Oğuztöreli, M. N.. Sur un problème mixte concernant une equation polyvibrante d'ordre supérieur de Mangeron. Bull. Acad. Roy. Belg. Cl. Sci. 58 (1972), 740–46.Google Scholar