Published online by Cambridge University Press: 14 November 2011
This paper combines the global bifurcation theory of Rabinowitz with Sturmian theory and careful estimates to obtain a detailed qualitative description of bifurcating branches of solutions to the equations for whirling nonuniform, nonlinearly elastic strings. These results generalize earlier work of Kolodner and Stuart on inextensible strings. It is shown that the location of solution branches for the generalization of Kolodner's problem is especially sensitive to the material properties of the string, whereas that for Stuart's problem is not. The analysis of a third problem illuminates the source of this dichotomy.