No CrossRef data available.
Article contents
Nondassical eigenvalue distribution of one-dimensional Schrödinger operators
Published online by Cambridge University Press: 14 November 2011
Synopsis
We consider differential operators of the form H = −d2/dx2 + q(x) acting on u ∈ L2(0,∞) with boundary condition u(0) = 0. The potential q(x) is such that H has essential spectrum [0,∞) and an infinite sequence of negative eigenvalues converging to zero. Let n(E) denote the number of eigenvalues of H which are less than E. Under certain conditions on q(x), the well-known formula n(E)∼(2φ)−1 vol {x, p | p2 + q(x)<E}, E↑0, holds. We shall study the validity of this formula for potentials which show oscillatory behaviour as x →∞, like e.g. q(x) = −(1 + x)−α(a + b sin x) with 0<α <2, a≧0, b≠0. We shall obtain the leading-order behaviour of both n(E) and vol n(E)∼(2φ)−1 vol {x, p | p2 + q(x)<E} as E↑0 for a certain class of q's, and we shall see that the classical formula fails in most cases, but there are some noteworthy exceptions.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 101 , Issue 1-2 , 1985 , pp. 149 - 158
- Copyright
- Copyright © Royal Society of Edinburgh 1985