Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:43:18.211Z Has data issue: false hasContentIssue false

Necessary and sufficient conditions for optimal controls in viscous flow problems

Published online by Cambridge University Press:  14 November 2011

H. O. Fattorini
Affiliation:
Department of Mathematics, University of California-Los Angeles, Los Angeles, California 90024-1555, U.S.A.
S. S. Sritharan
Affiliation:
Department of Mathematics, University of California-Los Angeles, Los Angeles, California 90024-1555, U.S.A.

Abstract

A class of optimal control problems in viscous flow is studied. Main results are the Pontryagin maximum principle and the verification theorem for the Hamilton–Jacobi–Bellman equation characterising the feedback problem. The maximum principle is established by two quite different methods.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aubin, J. P. and Ekeland, I.. Applied Nonlinear Analysis (New York: Wiley Interscience, 1984).Google Scholar
2Barbu, V.. Hamilton–Jacobi equations and nonlinear control problems. J. Math. Anal. Appl. 120 (1986), 494509.CrossRefGoogle Scholar
3Barbu, V., Barron, E. N. and Jensen, R.. Necessary conditions for optimal control in Hilbert spaces. J. Math. Anal. Appl. 133 (1988), 151162.CrossRefGoogle Scholar
4Barron, E. N. and Jensen, R.. Pontryagin maximum principle from dynamic programming and viscosity solutions to first–order partial differential equations. Trans. Amer. Math. Soc. 298 (1986), 635641.CrossRefGoogle Scholar
5Crandall, M. G., Evans, L. C. and Lions, P. L.. Some properties of the viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 282(2) (1984), 487502.CrossRefGoogle Scholar
6Crandall, M. G. and Lions, P. L.. Viscosity solutions of Hamilton–Jacobi equations. Trans. Amer. Math. Soc. 277(1) (1983), 142.CrossRefGoogle Scholar
7Ekeland, I.. Nonconvex minimization problems. Bull. Amer. Math. Soc. 1 (1979), 443474.CrossRefGoogle Scholar
8Fattorini, H. O.. The maximum principle for nonlinear nonconvex systems in infinite dimensional spaces. Lecture Notes in Control and Inform. Sci. 75 (1985), 162178.Google Scholar
9Fattorini, H. O.. A unified theory of necessary conditions for nonlinear nonconvex control systems. Appl. Math. Optim. 15 (1987), 141185.CrossRefGoogle Scholar
10Fattorini, H. O. and Frankowska, H.. Necessary conditions for infinite dimensional control problems. Math. Control Signals Systems 4 (1991), 4167.CrossRefGoogle Scholar
11Fattorini, H. O. and Frankowska, H.. Necessary conditions for infinite dimensional control problems. In Proceedings of 8th International Conference on Analysis and Optimization of Systems, vol. 108 (Antibes–Juan Les Pins, 1988).Google Scholar
12Fattorini, H. O. and Sritharan, S. S.. Optimal chattering controls for viscous flow (PAM Report 127, University of Colorado, 1992).Google Scholar
13Fattorini, H. O. and Sritharan, S. S.. Existence of optimal controls for viscous flow problems. Proc. Roy. Soc. London Ser. A 439 (1992), 81102.Google Scholar
14Federer, H.. Geometric Measure Theory (New York: Springer, 1969).Google Scholar
15Lions, J. L. and Magenes, E.. Nonhomogeneous Boundary Value Problems and Applications (Berlin: Springer, 1972).Google Scholar
16Masuda, K.. On the stability of incompressible viscous fluid motions past objects. J. Math. Soc. Japan 27(2) (1975), 294327.CrossRefGoogle Scholar
17Natanson, I. P.. Theory of Functions of a Real Variable (Moscow: Goztekhizdat, 1957).Google Scholar
18de Simon, L.. Un'applicanzione della teoria degli integrali singolari allo studio delle equazioni differenziali astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34 (1964), 205223.Google Scholar
19Sritharan, S. S.. Dynamic programming of the Navier–Stokes equations. Systems Control Lett. 16 (1991), 299307.CrossRefGoogle Scholar
20Sritharan, S. S.. An optimal control problem in exterior hydrodynamics. Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 533.CrossRefGoogle Scholar
21Sritharan, S. S.. Pontryagin maximum principle and dynamic programming for hydrodynamics. In Optimization and Nonlinear Analysis, eds Ioffe, M. M. A., Marcus, M. and Reich, S. (Harlow: Longman, 1992).Google Scholar