Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T22:56:09.799Z Has data issue: false hasContentIssue false

Multiplication dans les espaces de Besov

Published online by Cambridge University Press:  14 February 2012

J. L. Zolesio
Affiliation:
Institut de Mathématiques et Sciences Physiques, Université de Nice

Synopsis

Let f, g be two functions of two Besov spaces (or Sobolev spaces), we look for the Besov spaces to which the product f × g belongs so that the multiplication is a continuous mapping.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Grisvard, P.Commutativité de deux foncteurs d'interpolation. J. Math. Pures Appl. 45 (1966), 143206.Google Scholar
2Lions, J. L. and Peetre, J.Sur une classe d'espaces d'interpolation. Inst, Hautes Études Sci. Publ. Math. 19 (1964), 568.CrossRefGoogle Scholar
3Nikol'skii, S. M.Approximation of functions of several variables and imbedding theorems (Berlin: Springer, 1975).CrossRefGoogle Scholar
4Palais, R. S.Foundations of global non-linear analysis (New York: Benjamin, 1968).Google Scholar
5Stein, E. M.Singular integrals and differentiability properties offunctions (Princeton: Univ. Press, 1970).Google Scholar
6Triebel, H. Lebesgue-Besov Raume ohne Gewicht in ℝn und (Jena Univ. 1973).Google Scholar