Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T20:36:08.058Z Has data issue: false hasContentIssue false

Metrizability of precompact subsets in (LF)-spaces

Published online by Cambridge University Press:  14 November 2011

B. Cascales
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Murcia, 30.001-Murcia, Spain
J. Orihuela
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Murcia, 30.001-Murcia, Spain

Synopsis

In this paper we prove that every precompact subset in any (LF)-space has a metrizable completion. As a consequence every (LF)-space is angelic and in this way the answer to a question posed by K. Floret [3] is given. Some contributions to the general problem of regularity in inductive limits posed by K. Floret [3] are also given. Particularly, extensions of well-known results of H. Neuss and M. Valdivia are provided in the general setting of (LF)-spaces. It should also be noted that our results hold for inductive limits of an increasing sequence of metrizable spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bierstedt, K. and Meise, R.. Bemerkungen über die Approximationseigenschaft Lokalkonvexer Funktionenräume. Math. Ann. 209 (1974), 99107.CrossRefGoogle Scholar
2Floret, K.. Folgenretraktive Sequenzen lokalkonvexer Räume. J. Reine Angew. Math. 259 (1973), 6585.Google Scholar
3Floret, K.. Some aspects of the theory of locally convex inductive limits. Proceedings of the Paderborn Conference on Functional Analysis, North-Holland. In Functional Analysis: Surveys and Recent Results, eds. Bierstedt, and Fuchssteiner, , pp. 205237. Mathematical Studies 38 (Amsterdam: North Holland, 1979).Google Scholar
4Grothendieck, A.. Sur les espaces (F) et (DF). Summa Brasil. Math.3 6 (1954), 57122.Google Scholar
5Jarchow, H.. Locally convex spaces (Stuttgart: B. A. Teubner, 1981).CrossRefGoogle Scholar
6Köthe, G.. Topological vector spaces I (New York-Heidelberg-Berlin: Springer, 1969).Google Scholar
7Makarov, B. M.. Über pathologische Eigenschaften in induktiven Limiten von Banachräumen. Uspekhi Mat. Nauk 18 (1963), 171178.Google Scholar
8Neuss, H.. Über die Reguläritatsbegriffe induktiver lokalkonvexer Sequenzen. Manuscripta Math. 25 (1978), 135145.Google Scholar
9Pfister, H.. Bemerkungen zum Satz über die Separabilität der Fréchet-Montel-Räume. Arch. Math. 28 (1976), 8692.Google Scholar
10Valdivia, M.. Topics in locally convex spaces. Mathematical Studies 67 (Amsterdam-New York-Oxford: North Holland, 1982).Google Scholar
11Valdivia, M.. Quasi-LB-spaces. J. London Math. Soc. (2) (to appear).Google Scholar