Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T21:05:31.775Z Has data issue: false hasContentIssue false

Long-time behaviour for porous medium equations with convection

Published online by Cambridge University Press:  14 November 2011

Ph. Laurençot
Affiliation:
Institut Elie Cartan-Nancy, Université de Nancy I, BP 239, F-54506 Vandœuvre les Nancy cedex, France
F. Simondon
Affiliation:
Equipe de Mathématiques, CNRS URA 741, Université de Franche-Comté, F-25030 Besançon cedex, France

Abstract

Long-time behaviour of solutions to porous medium equations with convection is investigated when the initial datum is a non-negative and integrable function on the real line. The long-time profile of the solutions is determined, and depends on whether the convective or the diffusive effect dominates for large times. Sharp temporal decay estimates are also provided.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bénilan, Ph. and Bouillet, J. E.. On a parabolic equation with slow and fast diffusions. Nonlinear Anal. 26 (1996), 813–22.CrossRefGoogle Scholar
2Bénilan, Ph. and Touré, H.. Sur l'équation générale u t = ψ (u)xx − ψ (u)x + v. C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 919–22.Google Scholar
3Bénilan, Ph. and Touré, H.. Sur l'équation générale u t = a(·, u, ψ(·, u)x)x + v dans L 1. Ann. Inst.H. Poincaré, Anal. Non Linéaire 12 (1995), 727–61.CrossRefGoogle Scholar
4Carpio, A.. Unicite et comportement asymptotique pour des equations de convection-diffusion scalaires. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 51–6.Google Scholar
5Diaz, J. I. and Kersner, R.. On a nonlinear degenerate parabolic equation in infiltration or evaporation through a porous medium. J. Differential Equations 69 (1987), 368403.CrossRefGoogle Scholar
6Dunford, N. and Schwartz, J. T.. Linear Operators. Part I: General Theory (New York: Interscience, 1958).Google Scholar
7Escobedo, M., Vazquez, J. L. and Zuazua, E.. Asymptotic behaviour and source-type solutions for a diffusion-convection equation. Arch. Rational Mech. Anal. 124 (1993), 4365.CrossRefGoogle Scholar
8Escobedo, M., Vazquez, J. L. and Zuazua, E.. A diffusion-convection equation in several space dimensions. Indiana Univ. Math. J. 42 (1993), 1413–40.CrossRefGoogle Scholar
9Escobedo, M. and Zuazua, E.. Large time behaviour for convection-diffusion equations in ℝn. J. Fund. Anal. 100 (1991), 119–61.CrossRefGoogle Scholar
10Friedman, A. and Kamin, S.. The asymptotic behaviour of gas in an n-dimensional porous medium. Trans. Amer. Math. Soc. 262 (1980), 551–63.Google Scholar
11Gilding, B. H.. A nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa (4) 4 (1977), 393432.Google Scholar
12Gilding, B. H.. Improved theory for a nonlinear degenerate parabolic equation. Ann. Scuola Norm. Sup. Pisa (4) 16 (1989), 165224.Google Scholar
13Gilding, B. H. and Peletier, L. A.. The Cauchy problem for an equation in the theory of infiltration. Arch. Rational Mech. Anal. 61 (1976), 127–40.CrossRefGoogle Scholar
14Grundy, R. E., van Duijn, C. J. and Dawson, C. N.. Asymptotic profiles with finite mass in onedimensional contaminant transport through porous media: the fast reaction case. Quart. J. Mech. Appl. Math. 47 (1994), 69106.CrossRefGoogle Scholar
15Kamin, S. (Kamenomostskaya). Source-type solutions for equations of nonstationary filtration. J. Math. Anal. Appl. 64 (1978), 263–76.Google Scholar
16Kruzhkov, S. N.. Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications. Math. Notes 6 (1969), 517–23.CrossRefGoogle Scholar
17Laurencot, Ph.. Long-time behaviour for diffusion equations with fast convection. Ann. Mat. Pura Appl. (to appear).Google Scholar
18Laurencot, Ph. and Simondon, F.. Source-type solutions to porous medium equations with convection. Comm. Appl. Anal. 1 (1997), 489502.Google Scholar
19Liu, T. P. and Pierre, M.. Source-solutions and asymptotic behavior in conservation laws. J. Differential Equations 51 (1984), 419–41.CrossRefGoogle Scholar
20Simon, J.. Compact sets in the space Lp(0, T, B). Ann. Mat. Pura Appl. 146 (1987), 6596.CrossRefGoogle Scholar
21Simondon, F.. Strong solutions for u t = ψ(u)xxf(t)ψ(u)x. Comm. Partial Differential Equations 13 (1988), 1337–54.CrossRefGoogle Scholar
22Tadmor, E.. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal. 28 (1991), 891906.CrossRefGoogle Scholar