Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T20:31:40.650Z Has data issue: false hasContentIssue false

The Littlewood—Paley—Rubio de Francia property of a Banach space for the case of equal intervals

Published online by Cambridge University Press:  08 July 2009

T. P. Hytönen
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, Gustaf Hällströmin katu 2b, 00014 Helsinki, Finland ([email protected])
J. L. Torrea
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid and ICMAT (CSIC–UAM–UC3M–UCM) Cantoblanco, 28049 Madrid, Spain ([email protected])
D. V. Yakubovich
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid and ICMAT (CSIC–UAM–UC3M–UCM) Cantoblanco, 28049 Madrid, Spain ([email protected])

Abstract

Let X be a Banach space. It is proved that an analogue of the Rubio de Francia square function estimate for partial sums of the Fourier series of X-valued functions holds true for all disjoint collections of subintervals of the set of integers of equal length and for all exponents p ≥ 2 if and only if the space X is a UMD space of type 2. The same criterion is obtained for the case of subintervals of the real line and Fourier integrals instead of Fourier series.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)