Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T09:24:08.256Z Has data issue: false hasContentIssue false

Liouville theorems for linear elliptic systems

Published online by Cambridge University Press:  14 November 2011

N. Weck
Affiliation:
Fachbereich 6, Mathematik, Universität Essen Gesamthochschule, 4300 Essen 1, B.R.D

Synopsis

Liouville theorems are obtained for general elliptic PDE-systems ℒU(x): = Σlɑl≦21Aα(x) əαU(x)=0 essentially under the assumption that ℒ satisfies a coerciveness estimate over .

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Agmon, S.. Lectures on elliptic boundary value problems (New York: Van Nostrand, 1965).Google Scholar
2Cauchy, A.. Mémoire sur quelques propositions fondamentales du calcul des résidus, et sur la théorie des intégrates singulières. C.R. Acad. Sci. Paris 19 (1844), 1337–1334. See also Oeuvres, Ser. I, Vol. 8, 366–375.Google Scholar
3Dunninger, D. R.. Oh Liouville-type theorems for elliptic and parabolic systems. J. Math. Anal. Appl. 72 (1979), 413417.CrossRefGoogle Scholar
4Frehse, J.. Essential selfadjointness of singular elliptic operators. Bol. Soc. Brasil. Mat. 8 (1977), 87107.CrossRefGoogle Scholar
5Goyal, V. B. and Schaefer, P. W.. Liouville theorems for a class of fourth order elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 129137.CrossRefGoogle Scholar
6Goyal, V. B. and Schaefer, P. W.. Liouville theorems for elliptic systems and nonlinear equations of fourth order. Proc. Roy. Soc. Edinburgh Sect. A 91 (1982), 235242.CrossRefGoogle Scholar
7Hildebrandt, S. and Wildman, K. O.. Satze vom Liouvilleschen Typ fér quasilineare elliptische Gleichungen und Systeme. Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. II. 1979, Nr. 4, 4159.Google Scholar
8Huilgol, R. R.. On Liouville's theorem for biharmonic functions. SIAMJ. Appl. Math. 20 (1971), 3739.CrossRefGoogle Scholar
9Neuenschwander, E.. The Casorati-Weierstrass theorem. Historia Math. 5 (1978), 139166.Google Scholar
10Rudin, W.. Functional Analysis (New Delhi: Tata McGraw-Hill, 1973).Google Scholar
11Serrin, J.. Liouville theorems and gradient bounds for quasilinear elliptic systems. Arch. Rational Mech. Anal. 66 (1977), 295310.CrossRefGoogle Scholar
12Wloka, J.. Partielle Differentialgleichungen (Stuttgart: Teubner, 1982).CrossRefGoogle Scholar